
NEUTRINO: Fine-grained GPU Kernel Profiling via Programmable Probing

Songlin Huang
The University of Hong Kong
huangs0@connect.hku.hk

Chenshu Wu
The University of Hong Kong

chenshu@cs.hku.hk

Abstract
As GPUs play an increasingly important role in computer

systems in the scaling laws era, understanding fine-grained
GPU runtime behavior is more crucial than ever. However,
existing GPU kernel profilers, typically kernel-exclusive or
hardware-dependent, often fail to capture fine-grained mea-
surements. This paper presents NEUTRINO, a programmable
interface for GPU kernel profiling that leverages assembly-
layer probing to achieve instruction-level fine granularity, pro-
filing versatility across time and value domains, and hardware
independence. To better visualize the rich details captured
by NEUTRINO, we introduce the Densified Memory Access
Timeline (DMAT), a novel representation that offers new in-
sights into GPU runtime behavior. We implement NEUTRINO
in Linux for both NVIDIA and AMD GPUs and conduct
extensive evaluations and analyses. The results demonstrate
NEUTRINO’s superior capabilities in GPU kernel profiling
with low overhead. We envision NEUTRINO as a valuable
tool for the community and have open-sourced it to facilitate
future research at https://github.com/open-neutrino/
neutrino.

1 Introduction

With the emergence of artificial intelligence under the scaling
laws [41] in data, parameters, and computation, the underly-
ing computer systems have been scaling rapidly, primarily
driven by GPUs, parallelism-oriented computing devices that
are heterogeneous from the traditional OS running on CPUs.
The huge system scale and the unique parallelism-oriented
design open many research challenges on GPU systems, such
as communication [16,36,67,70], memory efficiency [43,78],
computation pipelining [35, 46, 63, 65, 75], and GPU cluster
scheduling [3, 37, 47, 52, 99]. To address these challenges,
researchers would greatly benefit from comprehensive mea-
surements and in-depth insights into the runtime behavior of
real workloads on GPU systems. Demystifying the otherwise
opaque GPU programs can promise new opportunities for
optimizing machine learning (ML) systems.

Figure 1: NEUTRINO’s Densified Memory Access Timeline
Plot. ●A NEUTRINO expands new dimensions from previous
●B hardware-dependent profilers and ●C kernel-exclusive soft-
ware profilers. Color depth in ●A shows density from parallel
threads, profiled from Flash-Attn-v2 [19] (non-causal).

However, profiling real GPU workloads at a fine granular-
ity has been well-recognized as a significant challenge from
previous attempts [5, 7, 23, 55, 58, 93]: ❶ The proprietary
and heterogeneous hardware, coupled with the huge system
scales (e.g., 10,000+ cores), limits the capability to probe fine-
grained information. ❷ GPU kernels are treated as atomic to
the host OS, which largely prevents profiling GPU kernels
through the mature OS profiling techniques [24]. ❸ Many
profilers [12, 15, 18, 50, 74] rely on concurrency mechanisms
like timer interrupts and locks, which are either unsupported
or inefficient on GPUs due to the parallelism-oriented archi-
tecture. These challenges are further amplified by the rapid
development of GPU systems with many new features intro-
duced over the past few decades, such as matrix core [1, 73]
in execution model and asynchronous copy [2] for memory
access, which continuously introduce new runtime behaviors,
performance issues, and profiling needs.

These unique challenges make existing GPU profilers ei-

https://github.com/open-neutrino/neutrino
https://github.com/open-neutrino/neutrino

ther kernel-exclusive [87], only capturing coarse-grained met-
rics like FLOP/s, or hardware-dependent [5,7,55,58], relying
on physical hardware features such as Performance Moni-
tor (PM) counters, as shown in Tab. 1. Additionally, these
hardware profilers are sampling-based: They use hardware
counter readings at certain intervals to capture statistics such
as memory throughput, and cannot support more informative
profiles like the page reference map [22] for capturing the spa-
tial and temporal patterns of memory access. There are also
explorations on GPU instrumentation [14, 77, 80, 82], such
as NvBit [93] that manipulates proprietary machine code or
HIPAnalyzer [21] that instruments compilers [44]. Yet these
efforts still only focus on statistics such as memory access
divergence among threads or reusable distance. To the best
of our knowledge, there exist no tools for a fine-grained and
general-purpose programmable interface of GPU profiling,
just like eBPF [24] for Linux Kernel tracing.

To bridge this gap, we present NEUTRINO, a GPU assembly
probing tool for fine-grained, versatile, and programmable
GPU kernel runtime profiling. Inspired by eBPF [24], NEU-
TRINO’s design aims to attach small snippets (probes) to GPU
programs to expose runtime details of program executions.
Specifically, NEUTRINO extracts, instruments, and reassem-
bles GPU assemblies [4,30,60], rather than machine code [57]
or compilers [44,45], allowing fine-granularity, versatility, and
programmability in one framework:
■ Fine-granularity: NEUTRINO directly works on assem-
blies, the lowest software level, to offer the finest granularity
at the instruction level that can be effectively mapped to par-
ticular hardware units such as tensor cores and memory I/Os.
■ Versatility: NEUTRINO supports GPU kernel profiling
from both perspectives of value, i.e., capturing runtime values
such as memory addresses and of time, i.e., recording event
timestamps or even intra-kernel micro-benchmarking by dif-
ferencing timestamps. By covering these two dimensions,
NEUTRINO supports versatile profiling tasks from warp/block
scheduling to memory access patterns.
■ Programmability: NEUTRINO extends the programma-
bility of previous GPU instrumentation frameworks [14, 21,
77, 80, 82, 93] to cooperative probes by leveraging registers
as the temporal storage between probes. By doing so, NEU-
TRINO enables more complicated and flexible profiling tasks
by cooperating probes at different tracepoints and time.

NEUTRINO excels with its distinct probe design (§3) of
three key components, namely snippet, tracepoint, and struc-
tured map, corresponding to the probe’s target functionality,
injection point, and output format, respectively. At runtime,
NEUTRINO probes will be injected into tracepoints of the
original program, and snippets use logically independent reg-
isters to place temporal results. This design, together with
the GPU SIMT model, ensures the probes are virtual to the
original program. Moreover, with eBPF-like structured maps,
NEUTRINO probes can flexibly store metrics to one or more
buffers via race-free saving without costly metadata.

We fully implement (§4) NEUTRINO for NVIDIA GPUs
with the CUDA driver and AMD GPUs with the ROCm driver
on Linux, consisting of three modules: the DSL compiler, the
hook driver, and the probe engine. The DSL compiler com-
piles probes written in platform-independent Python Trac-
ing DSL into raw low-level assembly probes wrapped in
TOML [68]. The hook driver emulates symbolic links to the
driver (shared library) to provide runtime support, including
capturing GPU calls from the user, allocating probe maps, and
saving results to the storage. The core probe engine validates,
instruments, and reassembles the probed assembly code from
wrapped low-level probes. Finally, NEUTRINO is encapsu-
lated into an easy-to-use CLI similar to bpftrace [13] that
can be run by neutrino -p <probe> <user/program>.

To better visualize the traces captured by NEUTRINO, we
introduce a novel plot named Densified Memory Access Time-
line (DMAT, §5), which improves the previous page refer-
ence map (strings) [11, 22] with physical time information
and memory access density from parallelism. As illustrated
in Fig. 1, DMAT expands new dimensions of observability
compared with hardware-dependent profilers (Fig. 1B) and
kernel-exclusive software profilers (Fig. 1C), enabling more
comprehensive and intuitive GPU runtime analysis. For ex-
ample, by comparing their DMAT profiles (Fig. 11), we can
visually and quantitatively confirm that FlashAttn-v1 [20] im-
proves memory efficiency and that FlashAttn-v2 [19] benefits
from better pipelining.

We perform comprehensive evaluations (§6) to validate the
trustworthiness, overhead, and applicability of NEUTRINO
on profiling real GPU workloads. The results demonstrate
that NEUTRINO ensures both execution correctness, i.e., prob-
ing will not change the original execution flow, and profiling
accuracy, i.e., profiles are trustworthy. It also yields low over-
head in both kernel slowdown (only 1.04x for most probes)
and additional register usage (on average 4.11 more registers)
Moreover, our extensive evaluations spotlight high system
efficiency compared to other profilers and the capability to
profile the whole model, even for LLMs. To showcase how
NEUTRINO-profiled insights can help diagnose performance
issues in GPU kernels, we conduct a case study (§7) on the
impact of synchronization on GPU runtime behavior, which
reveals an unnoticed tailing effect of shared GPU blocks on
one compute unit and helps pinpoint different root causes of
the performance bottlenecks.

NEUTRINO currently has limitations inherent to assembly-
level probing, such as the inability to access unpro-
grammable hardware like caches. Nonetheless, as a fine-
grained, versatile, and programmable framework for GPU
kernel profiling, we envision NEUTRINO as a valuable
tool for both research and industry communities. We have
fully open-sourced NEUTRINO at https://github.com/
open-neutrino/neutrino, and hope to foster a global com-
munity for its continuous development.

https://github.com/open-neutrino/neutrino
https://github.com/open-neutrino/neutrino

Design Fine-Granularity Versatility Programmability
Platform Target Grid Block Thread Instructions Value(Register) Time(Clock) Memory Programmable Persistence Cooperativeness Verification

Instrumentation-based GPU Kernel Profilers

Neutrino NVIDIA/AMD... assembly ✓ ✓ ✓ ✓ ✓ ✓ DMAT DSL/TOML eBPF-like Map ✓ ✓

Nsight Compute [58] NVIDIA unclear ✓ ✓ statistics PC Sample ✓ ✓ - - unknown - -
NvBit [93] NVIDIA machine code ✓ ✓ ✓ statistics ✓ - PRM C++ atomic - -
GTPin [80] Intel machine code ✓ ✓ ✓ ✓ - basic-block PRM C++ atomic - -
HIPAnlyzer [21] AMD compiler ✓ ✓ ✓ ✓ - basic-block PRM LLVM event buffer - -

Hardware-based GPU System Profilers

CUPTI [55] NVIDIA - ✓ ✓ - PC Sample - PC Sample PM Sample - - - -
RGP/GPA [7] AMD - ✓ ✓ - PC Sample - PC Sample PM Sample - - - -

CPU-side Software-based Profilers and Benchmarkers

torch.profiler [87] Independent - - - - - - - - - - -

Table 1: NEUTRINO vs. other GPU Profilers. NEUTRINO is the only platform-independent runtime GPU kernel profiler and
offers many unique features, e.g., the DMAT, programmability via Python DSL or TOML, cooperative probes, eBPF-like maps,
etc. PM stands for performance monitor, PC stands for program counter, and PRM stands for thread-local page reference map.

2 Background and Design Choice

GPU Profiling: Profiling builds roadmaps for performance
engineering. Different from CPU profiling [12, 18] empha-
sizing sequential execution efficiency like branch prediction,
GPU profiling prioritizes parallel execution scalability like
compute unit utilization and throughput. Taking memory ac-
cess as an example, CPU profiling cares about temporal lo-
cality like the working set [22], while GPU profiling focuses
more on coalescing access among threads to utilize the band-
width, opening unique challenges and research opportunities.
GPU Ecosystem: In modern computer systems, GPU has
become a general-purpose computing unit (GPGPU) backed
by a huge and complicated ecosystem covering numerous
computing tasks, such as deep learning training [8, 27, 79]
and inference [62, 94, 96]. However, from the perspective
of compilation, the complicated ecosystem can roughly be
divided into two branches: ❶ Ahead-of-Time (AOT) compiled
operator libraries of hand-written codes [53] compiled by
C++ compilers [6, 54], e.g., ATen [8]; ❷ Just-in-Time (JIT)
compiled domain-specific languages (DSLs) such as triton
[91] compiled by LLVM [44] / MLIR [45]. As shown in
Fig. 2, these two branches diverge only above the parallel
assembly. Consequently, to build a general-purpose profiler,
it has to be on or below the parallel assembly layer.
GPU Organization Hierarchy: As the thread and memory
organization on GPU significantly varies from CPU for par-
allelism, we present some key differences between CPU and
GPU below that are related to our design. First, parallelism
on GPUs is hierarchical: 32 or 641 threads are grouped into a
warp, the scheduling unit of GPU, i.e., these threads share a
single PC and must execute the same instruction at the same
cycle. Warps are further grouped into blocks, the concurrent
execution unit, i.e., threads in the same block are executed in
one physical compute unit (CU)2 for communication and syn-

1NVIDIA GPUs group 32 threads into a warp, while AMD GPUs mostly
group 64 threads into a wavefront (the different AMD’s name of warp).

2Vendors may use different names for compute unit, e.g., SM (Streaming
Multiprocessor) for NVIDIA GPU or EU (Execution Unit) for Intel GPU.

Figure 2: Complex GPU Ecosystem divided in two branches
AOT (left) and JIT (right) unified at parallel assembly layer.

chronization. Finally, blocks are grouped into grids mapped
to the same GPU, which is the management unit for host side,
and the measurement unit for kernel-exclusive profilers [87].

Similarly, the GPU memory is also hierarchically organized.
First, each thread holds private registers (RMEM, at most 255
32-bit regs per thread on A100) as a primary resource. Blocks
have CU-level shared memory (SMEM, at most 164KB on
A100) as the temporary buffer for results and communications.
Finally, there’s GPU-level global memory (GMEM, 80GB on
A100) for grid-level synchronization and kernel input/output.
GPU in the Operating System Paradigm: Positioned as
an accelerator that communicates with the host OS via the
driver, GPU programs are centralized with kernel functions,
the entry for GPU computing whose content will be executed
on the GPU while the rest of the program remains on the
host CPU. Specifically, GPU kernel is considered atomic to
the host OS, i.e., the execution inside the kernel is managed
by GPU hardware/firmware and is invisible and untouchable
to the host OS, which prohibits observing GPU programs
through mature OS technologies like ptrace or eBPF [24].

Apart from the host, profiling on GPU threads is also dif-
ficult as the systematic functionalities of GPU threads are

highly limited. GPU programs are of direct execution without
a management layer like the OS kernel. Particularly, there is
no support for timer interrupts, a crucial feature for sampling-
based profilers. Therefore, profiling techniques on traditional
OSs, e.g., sampling and scanning the stack frame, are not
applicable to GPUs. Moreover, there are no commonly sup-
ported disk I/Os, making it troublesome to save results.
Assembly as a Probing Interface: The unique characteristics
of GPU programming pose great challenges in building NEU-
TRINO, a fine-grained, versatile, and programmable GPU pro-
filing tool that is kernel-inclusive and hardware-independent.
The key question we need to answer is: at which layer should
NEUTRINO be built and how? In this paper, among all the
choices in Fig. 2, we choose the parallel assembly, such as
PTX/GCNAsm [4, 60] designed to adapt to rapid changes in
system and machine code, as the probing interface. Impor-
tantly, instead of static approaches, such as customizing profil-
ing passes [21] via compilers or naive asm() in C, we employ
a more capable but challenging approach, attaching probe(s)
at runtime, which minimizes usage overhead (e.g., recompil-
ing) for changing or enabling/disabling probes. This design
choice not only allows forward- and backward-compatibility,
but also promises distinct advantages in various aspects:
❶ Hardware-Oriented: As a low-level interface, assemblies
can capture hardware events that are important for perfor-
mance analysis but hard to track with high-level languages.
For example, there are only four related instructions in PTX
for memory access, i.e., ld, st, cp.async, and tensormap.
In contrast, with objects and templates in CUDA C++, it is
difficult to classify and capture all possible memory access.
❷ Special Registers / Instructions: Special registers of paral-
lel assemblies contain useful runtime information for profiling.
For instance, hwreg of GCNAsm tells which compute unit the
thread is scheduled on, while PTX’s special registers %clock
(in CU-local clock cycles) and %globaltimer (in GPU-local
nanoseconds) are helpful to measure the timestamp and can
be used as instruction-level timers as shown in Fig. 3.
❸ Compatibility: As shown in Fig. 2, parallel assemblies
are the highest common layers of the AOT and JIT compi-
lations. For example, PTX is the common output of CUDA
C++ compiled by gcc-based nvcc [54] and DSLs, e.g., Triton
backed by LLVM [86]. Thus, probing on assemblies can be
compatible with most infrastructures, while compiler-based
approaches are limited to the specific compiler or IR(s).
❹ Coverage: Compiler-based approaches require source
code, assuming that users have located the poor-performing
GPU kernel, which is uncommon as most programs have
many kernels. Instead, runtime approaches can cover all user
codes, capable of scanning poor-performing kernels.

The design choice of assembly-layer runtime probing also
poses unique challenges, such as securing probes without
compiler support, locating GPU code in the runtime, obtaining
high-level contexts, etc. We overcome these challenges in
NEUTRINO and enable it as a powerful GPU profiler.

Figure 3: Parallel assembly example (PTX) with possible
probing positions and corresponding functionalities.

3 NEUTRINO Design

NEUTRINO aims to formulate a simple yet powerful probe
design like eBPF probe [24] to profile GPU kernels with the
finest granularity to capture instructions, versatility to cover
time- and value-profiling, and programmability for users to
customize probe(s). Due to the massive parallelism of GPUs,
NEUTRINO targets lightweight probes that only operate at
tracepoints with the least disturbance to the remaining.

3.1 Programmable Probing Interface
As shown in Fig. 4, NEUTRINO features three key elements
in its probe design: snippet, tracepoint, and structured map:
Snippet: Same as the probing target, NEUTRINO’s snippet
is assemblies, with some helpers such as SAVE for logging
results and OUT/IN1/IN2 for reading registers (instruction
operands) for value profiling. Developers can also use other
assembly features, especially S_MEMTIME for time profiling.
Tracepoint: NEUTRINO formulates probe tracepoints primar-
ily at the finest instruction level, which assures both temporal
accuracy and hardware granularity such as wmma/mma for ten-
sor core operation. By grouping instructions, NEUTRINO’s
tracepoints can be extended to larger scales such as device
function calls and thread start/end.
Map: Similar to eBPF [48], NEUTRINO’s map explicitly struc-
tures the saving format to address the problem of persistence,
a troublesome issue on GPU due to race conditions from
parallelism and huge metadata from hierarchical organiza-
tion. NEUTRINO mainly defines maps at two levels (§3.3):
❶ thread-level: every thread saves, for value profiling; ❷
warp-level: only warp leader thread saves, for time profiling.

Figure 4: NEUTRINO programmable probing interface.
Probes consist of snippet, tracepoint and structured map. Snip-
pet can use helpers such as SAVE for storing values to NEU-
TRINO Map (§3.3). Multiple probes at different tracepoints
can compose more comprehensive tasks like block_sched.

Beyond the three components for formulating customizable
probes, the key design of NEUTRINO’s programmability is
cooperativeness: ❶ NEUTRINO probes of the same thread
can cooperate by leveraging registers as temporal storage
for advanced profiling tasks while maintaining efficiency as
register usage is parallel in GPU cores. ❷ NEUTRINO probes
can also cooperate with maps in GMEM, i.e., different probes
can contribute to and cooperate through the same map.

3.2 Virtualized Probe Execution Model
Since the GPU program is static to the OS, i.e., all code (as-
sembly) is loaded and known before execution, we choose
to directly place probes in the original assembly without pro-
tection, e.g., stack, to achieve cooperativeness. We identify
that by doing so, NEUTRINO probes are still executed virtu-
ally from the original program. As shown in Fig. 5A, such
virtualization is achieved via time and resource separation:
Time Separation: The time virtualization of NEUTRINO
originates from the SIMT execution model of GPGPU, where
parallelism happens among threads while execution within a
thread is generally sequential with one instruction at a cycle.
Thus, as probes are directly inserted into assemblies, their
time separation from the original program will be guaranteed.
Resource Separation: Similar to CPU, GPU threads also
have thread-private registers as their primary resources, which
contain intermediate results from ALU, addresses of shared
or global memories, etc. NEUTRINO virtualizes the probe
registers by separating an independent register group, as well
as other resources like GMEM. Thus, NEUTRINO probes
can avoid affecting the original program’s resources, and the
execution flow. It is worth noting that NEUTRINO’s probe reg-
ister group is declared logically at the assembly level rather
than physically. Therefore, NEUTRINO may not necessarily
introduce extra physical register usage (Tab. 3) because the

Figure 5: NEUTRINO probe execution model. ●A Probes are
executed virtually under time and resource (register and global
memory) separation; ●B NEUTRINO’s Probe Map for race-
free and metadata-efficient persistence: Each thread finds its
segment of map via its threadIdx and blockIdx.

declared logical registers will be integrated into physical regis-
ters by the assembler in register allocation, with independence
between probes and the original program preserved by depen-
dency tracking algorithms [39, 72].

3.3 Structured Map for Persistence
Persistence is a critical challenge for GPU profiling. Although
thread executions are parallel and independent, the underlying
memory system is shared, leading to race conditions among
concurrent savings. Thus, previous solutions [80, 93] widely
use atomics for separating persistence spaces, which can be-
come inefficient under massive parallelism. Moreover, the
GPU hierarchical organization creates rich metadata such as
threadIdx and blockIdx (24 bytes), which is informative
for analysis but can be storage-hungry [93].

Inspired by the design of lock-free per-cpu eBPF maps [48]
and event buffers of HIPAnalyzer [21], we explicitly struc-
ture NEUTRINO map to an ndarray layout, as shown in
Fig. 5B, with the shape determined by launch configurations
(blockDim, gridDim) and the map definitions (level, type,
size, cap). This enables race-free saving as each thread has
an independent segment and reduces storage pressure as most
metadata can be inferred rather than directly saved. NEU-
TRINO mainly formulates maps at two levels:
Thread-Level: The thread-level map is mainly designed for
value profiling where every thread independently saves data.
Its layout is in the form of [#Grid, #Block, cap] and
each element is of size. #Grid and #Block can be inferred
by launch config gridDim and blockDim, respectively. cap
specifies the maximum number of savings per thread, which
can be set to a suitable value, or measured dynamically by
running a counter probe3 in the runtime.

3A probe of count+=1 attached at tracepoints, and after execution, the
value of count can be regarded as cap (only applies to pure kernel functions).

Warp-Level: The warp-level map simplifies the thread-level
map for time profiling with layout [#Grid, #Warp, cap]. Be-
cause threads within the same warp are scheduled together for
the same instruction, recording event timestamp only needs
one thread inside the warp other than all, which can signifi-
cantly reduce the memory and storage pressure.

Based on these two levels, NEUTRINO can extend different
types of maps, such as the simplest array, or advanced ring
(ring buffer) and hash to support versatile user needs.

3.4 Verification for Security
Verification [28, 84] has been proven vital for programmable
probes [24] as unsafe probes can break the execution flow of
the original program and invalidate the profiling. The verifier
can also help guide developers in writing correct probes. In
NEUTRINO, we identify and prevent three key security issues:
Overwrite Original Registers: As discussed in §3.2, GPU
threads use registers as primary resources. Thus, modifica-
tions of registers used by the original program are unsafe. For
example, modifying a register holding address to global mem-
ory could lead to illegal memory access (Fig. 6A). Thus, NEU-
TRINO requires probes to use independent register groups, and
prohibit probes that modify original registers.
Program Misorder: Although the SIMT program model
guarantees that instructions within the thread are executed
linearly, there are flow control instructions, such as S_BRANCH
(GCNAsm) or bra (PTX), that may change the execution
order, which are unsafe for probes as they may break the
original execution order (Fig. 6B). Thus, NEUTRINO prohibits
probes from instructions that change the execution flow.
Shared Memory: As an important factor for acceleration, the
shared memory has been highly optimized for storage [17,91]
and access efficiency [89]. Thus, additional shared memory
usage from the probes may greatly affect or fail the execution
if the original usage is already at the hardware limit. Thus,
NEUTRINO prohibits probes from using shared memory.

4 NEUTRINO Implementation

We implement NEUTRINO in Linux for NVIDIA GPU with
CUDA driver and AMD GPU with ROCm/HIP runtime. Our
implementation consists of three major components: ❶ a
hook driver (§4.1, ≈2,500 lines of C code) to provide run-
time support for assembly tracking, code caching, etc; ❷ a
probe engine (§4.2, ≈2,000 lines of Python code) to instru-
ment parallel assemblies; ❸ a DSL compiler (§4.3, ≈1,000
lines of Python code) to translate probes in platform-agnostic
Python Tracing DSL into platform-specific assemblies (PTX
for CUDA and GCNAsm for ROCm/HIP). We implement
the core probing engine and the DSL compiler in Python to
make the infrastructure more approachable and extensible for
developers. Besides, we also provide utilities (§4.4), such as
ecosystem integrations, analysis code generations, etc.

Figure 6: NEUTRINO verification against two unsafe opera-
tions: ●A overwrite original regs; ●B change execution flow.

Figure 7: NEUTRINO workflow. Entry loads and JIT compiles
(§4.3) probes, and injects hook driver. Hook driver (§4.1) cap-
tures GPU workloads, invokes probe engine (§4.2), allocates
probe buffers, launches probed kernel, and dumps results.

Finally, we wrap these modules as a command-line inter-
face similar to bpftrace [13] and valgrind [74]. As shown
in Fig. 7, when a user invokes neutrino with the probe dmat
via -p/–probe argument, the entry will load, compile, and
verify the probe (.py) into platform-specific assembly (.asm)
wrapped in TOML [68]. Then the entry will set environment
variables, such as NEUTRINO_PROBE for probe contents and the
special LD_PRELOAD to inject the hook driver, and fork a child
process to launch the workload. Throughout the execution,
the hook driver will continuously capture the GPU workload,
particularly the GPU kernels launched. For each uncached
GPU kernel, the hook driver will invoke the probe engine,
which objdump, probe, and reassemble the kernel. After load-
ing back the probed kernel, the hook driver allocates probe
buffers on CPU and GPU, and launches the probed kernel.
Upon completion, the hook driver will dump probe buffers
containing metrics and give back control to user programs.

4.1 Hook Driver
Though drivers in OS are mostly referred to kernel extensions
exposed via read/write/ioctl syscall, such as nvidia.ko,
most vendors also maintain higher-level user-space drivers
as shared libraries such as libcuda.so or libamdhip.so in
Linux. These driver shared libraries are often highly complex
and closed-source. However, given that symbols in ELF are
resolved via their signatures, we can build a clever hook driver
by defining all functions with matching signatures and using
dlfcn internally to locate and call the real function from the
actual driver (More details in Appendix B). Compared with

Figure 8: NEUTRINO hook driver infrastructure. Hook driver
catches load and launch API for loading images and launch-
ing kernels on GPU, respectively. Hook driver maintains two
hash-based [33] storage for image (upper) to map kernel to
binary image, and kernel (lower) to avoid repeated probing.

other approaches like eBPF uprobe [24], our hook driver is
safer and more flexible as all code is executed in the user
mode, supporting fork/wait that are important for interac-
tions with the probe engine. We leverage the hook driver to
provide the following supports:
Code Tracking: Compared with CPU code implicitly loaded
by the OS, GPU code, in the ELF [25] or FatBinary [56]
format, requires an explicit load via cuModuleLoad. Other
functions, such as cuModuleGetFunction may also be ap-
plied to locate the specific kernel from the module. We hook
these APIs (Fig. 8) to capture all images loaded, kernels ex-
tracted, and the mapping from kernels to code. Each image is
memcpyed into the image storage with size from its header to
avoid being freed by resource management of user programs.
Runtime Probing: As the execution is non-local, launch-
ing GPU kernel functions is not simply adding stack frames
but requiring an explicit driver call to cuLaunchKernel or
hipModuleLaunchKernel. We hook these APIs to provide
runtime support: ❶ It searches for the probed kernel in the ker-
nel storage via the original kernel (a pointer); ❷ It allocates
probe buffer(s) according to the metadata; ❸ It launches the
probed kernel and synchronizes for the finish, i.e., probe
buffers on GPU are of metric readings; ❹ It memcpys probe
buffer back to CPU, then fwrites and frees probe buffers.

More importantly, when the probed kernel is not found
in the kernel storage, the hook driver is also responsible for
interacting with the probe engine: ❶ It searches for the binary
containing the kernel in the image storage. ❷ It fwrites the
binary in the directory and forks a subprocess to invoke the
probe engine. ❸ After waiting, it looks up the directory and
loads back the probed kernel and metadata, e.g., number of
probes. ❹ Finally, the probed kernel and metadata will be
added to kernel storage. Failed kernels will also be added to
kernel storage with status=false to avoid repeating.

Other functions are unhooked and we auto-generate them
by parsing the header cuda.h/hip_runtime.h and the sym-
bol table of the shared library, such as libcuda.so.

Figure 9: NEUTRINO probe engine workflow. Probe engine
objdumps and prunes the binary, and finally reassembles it.
In probing, it uses map defns to plan probe buffers and trace-
points to match instructions. It also fills helpers in snippets
with tokens before injecting them into assemblies.

4.2 Probe Engine
As shown in Fig. 9, NEUTRINO probe engine first objdumps
the dumped GPU binary to extract parallel assemblies in text
format. Then it will use the kernel name to match and prune
the many-kernel raw assemblies into a single-kernel assembly
while keeping global definitions and device functions.

Next, NEUTRINO will process and add the probes read
from environmental variables, involving the following steps:
❶ It plans probe map(s) that directs each warp/thread to its
segment(s) of map(s) according to the map definition (§3.3,
level/type/size/cap) and thread indexes, e.g., threadIdx,
as detailed in Appendix C. ❷ It coarsely parses the kernel as-
sembly into parameters, register declarations, and instructions.
Then it matches the tracepoints to specific instruction(s). ❸
It thoroughly parses each matched line (e.g., ld.global.u64
%rd1, [%rd2];//%rd1=*%rd2) into tokens, such as opcode
(ld.global.u64) and operands %rd1, %rd2. Then it fills the
helpers in snippets, such as ADDR, to the real register %rd2.
Finally, it places snippets before/after matched instructions,
as well as the map addresses at the end of kernel parameters,
and the assembly of map planning at the kernel beginning.

After probing, it converts the probed assemblies into ma-
chine code via assemblers such as ptxas [61]. The probe
engine will also save kernel metadata useful for the hook
driver, such as the probes, maps, callbacks, etc.

4.3 Probe DSL and Compiler
A practical issue of the probe engine is that probes are of
assemblies, a low-level and hardware-dependent language.
Direct assembly programming may be less friendly for gen-
eral developers. Thus, to enhance NEUTRINO’s hardware in-
dependence and usability, we propose a minimalistic Python
domain-specific language (DSL) as the high-level interface
for NEUTRINO probes, similar to bpftrace [13] for eBPF [24].
Note that DSL is optional for NEUTRINO, experienced devel-
opers can still handcraft assemblies for advanced usages.

As shown in Fig. 10, the NEUTRINO DSL closely follows
the Python syntax, allowing users to declare probes with the
@probe decorator over functions with tracepoints specified
as decorator arguments and the snippet as the function body.
Similarly, maps can be declared with @Map decorator with
the structure defined as class members. Moreover, contexted
probe registers shared across probes can be defined via value
assignment syntax with types annotated in the global scope.
NEUTRINO probes are not allowed to use other functions like
open. Instead, we provide helper operands like nl.addr for
reading registers and helper functions like nl.clock() and
Map.save() for getting device-side clocks and saving results.

This DSL will be just-in-time compiled into the platform-
specific assembly-based probes in two steps, with a compila-
tion example of Fig. 10 in Appendix D: ❶ It uses Python’s
ast module to parse and transform the Tracing DSL to an
intermediate representation (IR) similar to the eBPF ISA [90].
❷ The IR will be translated into platform-specific assem-
blies, i.e., PTX Assembly and GCNAsm, and helper operands
will be preserved for the probe engine. We design the IR
to be eBPF-like, potentially enabling reuse of mature eBPF
toolchains, such as the reputable eBPF verifier [28].

4.4 Utilities
Ecosystem Integration: Solely hooking onto the driver or
probing at the assembly would lack high-level info like tensor
shapes that are useful for analysis. Thus, we also implement
utilities for ecosystem integrations like PyTorch [8] by Python
sys.settrace to expose high-level tensor information.
Benchmarking Mode: To evaluate system overhead and pro-
vide time alignment for heavy probes, NEUTRINO provides a
benchmark mode that launches both the probed kernel and the
pruned kernel (stripped of probes and assembled with iden-
tical configurations) with CUDA/HIP event timers to bench-
mark the additional execution latency caused by probes.
Analysis Codegen and Callback: To facilitate analysis, NEU-
TRINO supports generating tracing parsing code in Python
based on the map definition (such as Fig. 10) to facilitate
users extracting information from traces, with an example in
Appendix E. Moreover, NEUTRINO supports adding callbacks
(such as Line 3 of Fig. 10) for automated posterior analysis.
Source Code Annotation: To give more precise control,
we implement a source code annotation tool in NVTX-like
API [59]. The probe engine can look up the lineinfo (special
comments, e.g., ".file 1 example.py" and ".loc 1 33
45") and cross-reference with the source code (line 33 of 1st
file, example.py) to include or exclude the instruction.

4.5 Extending NEUTRINO to Other Platforms
Though the current implementation only supports NVIDIA
and AMD GPUs, NEUTRINO can be extended to other plat-
forms, such as Intel oneAPI [26]. NEUTRINO’s hardware

from neutrino import probe, Map
import neutrino.language as nl
CALLBACK = "block_sched.py" # for trace analysis
declare maps for persistence
@Map(level="warp", type="array", size=16, cap=1)
class block_sched:

start: nl.u64
elapsed: nl.u32
cuid: nl.u32

declare probe registers shared across probes
start: nl.u64 = 0 # starting clock
elapsed: nl.u64 = 0 # elapsed time, initialized to 0
define probes with decorator
@probe(pos="kernel", level="warp", before=True)
def thread_start():

start = nl.clock()
@probe(pos="kernel", level="warp")
def thread_end():

elapsed = nl.clock() - start
block_sched.save(start, elapsed, nl.cuid())

Figure 10: NEUTRINO DSL probe example. Each warp has
probe register, e.g., start, and saves a block_sched.

independence originates from its design on the two common
components across platforms: parallel assembly to accom-
modate rapid architecture-level evolution, and the driver to
control the execution from the host OS.

In practice, to extend NEUTRINO to other platforms, one
needs to implement the hook driver, probe engine, and (op-
tional) DSL compiler backend. For the hook driver, as most
functionalities are standardized to platform-agnostic mod-
ules, we expect most changes to be around API renaming
and debugging, e.g., cuLoadModule to hipLoadModule for
ROCm/HIP support. Regarding probe engine, a new parser
and matcher for the different assembly syntax (e.g., GCNAsm
[4]) shall be needed, but the overall infrastructure (Fig. 9)
remains unchanged. The DSL compiler needs a backend to
translate our eBPF-like IR into assembly. We expect this
would be similar to how Triton [91] supports new hardware
with extended codegen (like our probe engine and DSL com-
piler) and launcher (like our hook driver).

4.6 Usage: Putting It All Together
The above components shape a user-friendly and easy-to-use
profiling tool of NEUTRINO. Compatible with many frame-
works such as PyTorch [8], Triton [91] and JAX [27], the us-
age of NEUTRINO is as simple as bpftrace, with many built-
in tools such as block_sched (Fig. 10) to check the block
scheduling cost of kernels. NEUTRINO’s user-friendliness is
best demonstrated through a simple example, where we try to
profile the following line of PyTorch code and gain insights:

torch.zeros((4096,4096),torch.float16,device="cuda")

To do so, a user just needs to run the NEUTRINO CLI with
the –probe/-p option:

$ neutrino -p block_sched python -c "torch.zeros(...

Then, when finished, traces will be placed in a directory with
a print-out message from the analysis callback as follows:

vectorized_elementwise: # kernel name, truncated
No.block:32768 Exec:680869 Sched:142674 (cycle/SM)

Here the vectorized_elementwise kernel [88], widely used
by unary tensor operations, is used for initializing allocated
memory with zeros. We measure the scheduling time by simu-
lating the block dispatching to CUs. For every recorded block
on the CU, if its start clock is greater than any existing
block’s end clock (start + elapsed), then a block replace-
ment happens with scheduling cycles estimated by the next
start - the previous end and execution cycles measured by
the previous elapsed (Complete code in Appendix E).

The profiling results reveal a surprising ∼ 20% time spent
on scheduling blocks to physical SMs as the kernel launches
a huge number (32,768) of blocks and the execution time
of each block is relatively small. Based on the insights, one
can optimize the performance by reducing the number of
blocks launched by the kernel. To do so, we can use the
CUDA memset or instruct LLMs to write a persistent kernel
(examples in Appendix F) that fixes the number of blocks
to the hardware limit. To apply customized initialization,
we replace torch.zeros with torch.empty that allocates
memory without initialization, and add a line of cuMemset or
zero_persistent. This modification offers ∼ 28% speedup:

Original kernel time: 34,493 ns
torch.zeros((4096,4096),torch.float16,device="cuda")
Updated memset time: 24,630 ns
t=torch.empty((4096,4096),torch.float16,device="cuda")
driver.cuMemsetD16(t.data_ptr(), 0, 4096*4096)
Updated zero_persistent kernel: 24,891 ns
zero_persistent(t) # code in Appendix F

The above one-line debugging example demonstrates the ca-
pability and simplicity of NEUTRINO to pinpoint performance
bottlenecks within the kernel. Note that NEUTRINO also sup-
ports more advanced usage beyond the above example, includ-
ing profiling the whole model with other interesting tools:

$ neutrino -p tensorop_count # number of tensor op
$ neutrino -p gmem_bytes # number of GEMM bytes used
$ neutrino -p dmat # draw DMAT Plot
$ neutrino -p <to/be/contributed/by/you>

5 NEUTRINO Visualization

In this section, we introduce the Densified Memory Access
Timeline (DMAT) plot, an insightful visualization of GPU
runtime workload behavior, as presented in Fig. 1 and Fig. 11.

DMAT plot is inspired by the page reference map [11, 22],
which shows the virtual time as the x-axis and page accesses
as the y-axis, where a point represents an access to the page at
the time. As a reference standard, page reference maps have
proven to be a useful tool for research on virtual memory
management [11] and replacement algorithms [10].

To accommodate the massive parallelism of GPU, DMAT
extends the original page reference map in two perspectives:
Physical Time: Page reference maps [11, 22] and general
memory tracers [66, 74] commonly use a thread-local auto-
incremental index as the virtual time denoting the access order.
However, we find that the virtual time is insufficient under
parallelism where each thread only holds part of the entire
page reference map. Because starting times and execution
paces of threads diverge, there will be unavoidable misalign-
ment among the virtual time when aggregating page reference
maps from individual threads to form the complete trace.

Hence, for DMAT we use the device-side physical time
to provide reliable aggregation. Specifically, we provide two
types of DMAT: ❶ Normalized to the starting clock (Fig.
1, Fig. 11) of unsynchronized CU-level clocks, suitable for
analyzing algorithm behavior; ❷ Synchronized to a less ac-
curate (MHz) GPU-local timer (Fig. 15), representing actual
memory access for hardware/cache analysis (Appendix G).
Page Access Density: Previous page reference maps are in
2D, where a point denotes an access at the time to the page.
However, for highly parallelized environments, there are likely
many concurrent accesses to the same page at the same time
from multiple threads. We record such parallel access inten-
sity as density and mark it as color depth to distinguish it
from the temporal frequency in traditional page reference
maps [11, 22], highlighting the new informative dimension
spanned for analyzing the effect of parallelism.

The proposed DMAT not only facilitates traditional mem-
ory analysis on GPU (e.g., data races, access anomalies), but
also features unique benefits for GPU runtime analysis:
■ Color Depth: The color depth in DMAT denotes the den-
sity of parallelization. When aligned to the GPU-local timer, it
reflects the real memory load, with shallow regions pinpoint-
ing uncoalesced access among threads and excessive intensity
indicating potential memory I/O contention. When aligned
with the starting clock, color depth reflects the divergence
among threads where pale patterns usually indicate divergent
thread executions or imbalanced workloads that may waste
the computing power.
■ Empty Holes: Empty holes in DMAT demonstrate that
pages remain unused for a significant amount of time, which
includes two cases (Fig. 11b): ❶ Discrete empty holes usually
reflect computing within CUs. The duration reflects the oper-
ational intensity [95] per main loop, where a too long empty
holes might be inefficient in pipelining [20]; ❷ Structured
empty holes usually reflect algorithm improvements, while
extra-large structural empty holes may reflect time fragmen-
tation and optimization opportunities.

(a) Flash-Attn v2 (Triton) [19] with shared block (b) Flash-Attention-v1 [20] (c) Memory-Efficient-Attention [69]

Figure 11: NEUTRINO DMAT plot (captured on RTX3080, Appendix A) for different attention algorithms, which exhibit distinct
memory access patterns. (a) differs from Fig. 1 with exclusive SM. By comparing the DMAT of different algorithms, we can
visually identify the improvement of (b) FlashAttn-v1 [20] w.r.t. (c) Memory Efficient Attention [69] comes from I/O efficiency,
while the gain of (a) FlashAttn-v2 (Fig. 1) comes from better pipelining, both consistent with their respective claims.

6 NEUTRINO Evaluation

We conduct evaluations to answer the following questions on
the reliability and usability of NEUTRINO: Are NEUTRINO’s
results trustworthy (§6.1)? How much performance and re-
source overhead does NEUTRINO introduce (§6.2)? How ef-
fective is NEUTRINO in profiling real applications (§6.3)?

Our evaluation is performed on two platforms, NVIDIA
A100 80GB GPU and NVIDIA RTX4090 24GB GPU. NEU-
TRINO is compiled with gcc-11.4.0. Other software used in-
cludes Python 3.11.4, CUDA 12.6, PyTorch 2.5.0, Triton 3.1.0,
CUTLASS 3.5.0, and Ubuntu 22.04.

6.1 Correctness Validation
We identify and verify two types of correctness: ❶ Execution
Correctness that ensures the probing will not alter the original
execution flow; ❷ Profiling Accuracy that ensures the metric
reading from NEUTRINO is reasonable and correct.
Execution Correctness: We validate the execution correct-
ness by comparing output differences between the probed and
original kernels, as any difference in execution flow will likely
change the output or corrupt the system. To do so, we run
each test twice, one with NEUTRINO probes and one without
probes (i.e., the original execution) under identical input and
configurations. The results show no significant differences
between the probed and original outputs.
Profiling Accuracy: We verify the profiling accuracy from
two perspectives. For metrics overlapped with other profilers
like Nsight Compute [58], (block_sched, gmem_bytes, and
tensorop_count), we run the same program separately with
NEUTRINO and Nsight Compute, and compare their metric
readings. The captured results give consistent metric readings.

Regarding new metrics beyond the scope of existing profil-
ers, particularly DMAT (§5), we validate their correctness by
profiling carefully designed "micro-benchmarking" kernels
having expected theoretical metric values, and comparing with

the actual metric readings. We design micro-benchmarking
kernels using ld/st instructions with L1 cache disabled, for
memory access, and spin-based sleeping to controllably simu-
late computation inside CUs. We implement several memory
access patterns: Linear, Strided, Gather, Scatter, and Random.
We emulate these access patterns on the CPU, with addresses,
normalized to base addresses, derived from the access pat-
tern’s code, and intervals (in cycles) between consecutive
accesses estimated by the sleeping time and memory latency.

We compare theoretical estimations and actual readings to
evaluate: ❶ Address Consistency: Calculated as Hamming
distance between emulated and profiled address sequences;
❷ Clock Errors: Measured as the differences of intervals be-
tween consecutive accesses within threads; ❸ DMAT Similar-
ity: Computed as RMSE between DMAT (treated as matrices).
Tab. 2 demonstrates that DMAT can correctly capture memory
addresses (with Hamming distances of zeros) and achieve less
than 200 cycles time resolution (< 7% of the loop time). Ac-
cumulated clock errors will lead to a misaligned timeline for
DMAT, resulting in high RMSE errors, which are marginal for
coalesced accesses (e.g., stride), yet become considerable
for uncoalesced accesses, e.g., ∼ 60% error for linear. It is
because uncoalesced accesses have a lower average intensity
(∼ 16) as normalization bases and experience more variable
memory latencies (∼ 190 cycles clock errors). As detailed in
Appendix H, large DMAT errors are mainly due to the static
emulation not considering memory system dynamics, e.g.,
cache, rather than profiling, which we reserve for future work.

Table 2: DMAT micro-benchmark w.r.t. theoretical metrics.

Address Consistency Clock Errors DMAT Similarity
Kernel Hamming Distance Mean (Normalized) RMSE (Normalized)

linear 0 190.1 (6.30%) 9.54 (59.62%)
stride 0 96.20 (3.42%) 277.4 (5.21%)
gather 0 58.11 (2.70%) 33.80 (0.44%)
broadcast 0 65.19 (3.01%) 192.5 (2.64%)
random 0 179.8 (5.98%) 221.7 (4.86%)

Table 3: Kernel slowdown and additional physical register usage of NEUTRINO: Kernel slowdown is normalized to original
kernel latency and additional register usages are averaged based on assembler [61] debug information. NEUTRINO might lead to
kernel speedup on lightweight probes, e.g., 0.9868x speedup of gmem_bytes on GEMM, and we discuss this abnormal effect in §8
and Appendix K. dmat probe leads to different degrees of slowdown on different kernels, as discussed in depth in Appendix I.

block_sched gmem_bytes tensorop_count mem_trace
warp:array:16:1 thread:array:8:1 thread:array:8:1 thread:array:16:count

Kernel Additional Kernel Additional Kernel Additional Kernel Additional
Slowdown Registers Slowdown Registers Slowdown Registers Slowdown Registers

CUTLASS
Standard GEMM 0.9997x +4 0.9868x +4 0.9873x +4 8.8933x +1
Stream-K GEMM 1.0050x +12 1.0022x +12 1.0034x +12 10.3709x +6
Conv2D 1.0327x +0 1.0934x +0 1.1061x +0 2.7463x +28 (spill)

Triton Group-GEMM 0.9804x +8 (spill) 0.9798x +8 (spill) 0.9796x +8 (spill) 8.3589x +516 (spill)
Flash-Attnv2 0.9999x +2 1.0257x +2 1.0256x +2 2.9392x +1.50

PyTorch

Batch/LayerNorm 1.0251x +4.58 1.0951x +3.54 1.0981x +3.25 5.4392x +4.67
SoftMax 1.0004x +4.5 1.0006x +3.5 1.0006x +3.5 13.1630x +8
Sum 1.0653x +4 1.0389x +2 1.0390x +2.67 4.4597x +8.67
Max/AvgPool 1.0406x +3 1.3882x +2 1.3875x +2 7.2559x +4
Embedding 1.0068x +6 1.0009x +4 0.9995x +2 9.1155x +6
Gather 0.9596x +5 0.9957x +2 0.9782x +2 5.5659x +6

6.2 Profiling Overhead
We evaluate two types of profiling overhead: ❶ Performance
Overhead: the kernel slowdown due to probes can com-
promise the accuracy of time-related profiling; ❷ Resource
Overhead: additional registers from probes, which may affect
block dispatching or even lead to register spilling.
Performance Overhead: We formulate the kernel overhead
as the slowdown from probe instructions normalized to the
execution time of the original kernels. For better accuracy,
we evaluate the kernel execution time via device event timers
(§4.4). Results presented in each left column of Tab. 3 demon-
strate the efficiency of NEUTRINO with controllable latency
(1.04x on average) on lightweight probes i.e., block_sched,
gmem_bytes and tensorop_count, while heavy probes such
as dmat introduce considerable slowdown (7.12x on average).
And our analysis (Appendix I) shows that DMAT’s frequent
memory I/O is the cause of the slowdown, and degrees of
slowdown depend on the percentage of memory accesses and
kernel execution time. Moreover, we identify that lightweight
probes could abnormally accelerate the program, and our anal-
ysis (Appendix K) finds that it is because probe instructions
can lead assemblers to better instruction flow (+5.88% IPC)
and thus better performance (up to 0.94x faster).
Resource Overhead: We formulate the resource overhead
as the difference in the number of physical registers used by
the probed kernels compared to the original kernels. Results
shown in each right column of Tab. 3 demonstrates the low
overhead for NEUTRINO probes with 3.78 more registers
used in lightweight probes and 5.09 more registers used in the
heavy dmat probe. The phenomenon that each probe defines
the same number of logical registers but uses varying and
fewer physical registers also confirms the effectiveness of our
design of using logical registers rather than physical ones,
allowing potential optimization by the assembler.

6.3 Extensive Study
We further conduct two extensive studies evaluating NEU-
TRINO’s applicability in evaluating real-world workloads:
GMEM Usage in Model Profiling: In practice, developers
need to profile the whole model, rather than a single kernel, to
locate potential performance issues. GMEM usage becomes
a constraint here as most GMEM is occupied by model pa-
rameters. Thus, we conduct an intensive test on NEUTRINO’s
maximum GMEM usage in end-to-end profiling on the whole
model inference pass. We select ResNet [34], Stable-Diffusion
[71], Mamba-1.7B [31], and Llama3-1/3/8B [29].

The result shown in Fig. 12 demonstrates the efficiency of
NEUTRINO’s memory usage, with lightweight probes being
at least an order of magnitude smaller of the original memory
footprint, especially for transformers like Llama. GMEM
usage of the heavy dmat is mostly remains within the original
memory usage, even under a large batch size (256). Moreover,
by comparing the results of Llama-1B/3B/8B, we observe that
the proportion of NEUTRINO’s GMEM usage relative to the
original usage decreases surprisingly as the model scales. This
finding demonstrates that the growth of NEUTRINO’s memory
requirements is slower than model size scaling and highlights
the usability of NEUTRINO in profiling larger models.
Profiler Exposed Latency: In addition to kernel slowdown,
profilers also expose other noticeable latencies, including
Prologue for allocating probe maps and calling the probe en-
gine and Epilogue for copying back probe maps and saving
traces to disk. The sum of these is the latency exposed to
the upper layer. To evaluate the overall profiling efficiency of
NEUTRINO, we compare their exposed latency with Nsight
Compute [58] on overlapped metrics via application bench-
markers [8, 89, 91]. Results presented in Fig. 13 highlight
the reduction of exposed latency and the efficiency of NEU-
TRINO’s system design and implementation.

Figure 12: Max probe memory usage of NEUTRINO in profiling model forward. Probe memory usage is log-scaled to original
memory usage ((labeled in purple). gmem_bytes and tensorop_count have the same map definition and the same usage.

Figure 13: Exposed latency comparison: NEUTRINO and
Nsight Compute [58]. NEUTRINO latency is decomposed
into prologue (<1%), kernel and epilogue latency.

7 Case Study with NEUTRINO Insights

We envision NEUTRINO to be a useful tool for GPU per-
formance engineering, paving the way for optimizing ML
systems with fine-grained runtime insights. This paper mainly
focuses on the design and implementation of NEUTRINO, and
thus, how to leverage profiles is not our primary goal. Never-
theless, to showcase how one could exploit NEUTRINO and
DMAT plots for previously unavailable insights, we carry out
one case study on the impact of synchronization:

Similar to hyper-threading on CPU, GPU SM Sub-Partition
(the execution unit) also maintains multiple candidate warps
(the scheduling unit in GPU), and in each cycle, one warp will
be selected by the warp scheduler to run. Such a design can
reduce blocked waiting of instruction completion, particularly
for non-local operations like memory I/O, as other candidates
can be scheduled to utilize the core. In practice, there could
be two cases for these warps: ❶ All warps belong to the same
block that might need synchronization; ❷ Warps belong to
different blocks that are mutually independent.

To identify the potential runtime difference with respect
to the difference in synchronization, we create a controlled
pair on Flash-Attn-v2 [19] implemented by Triton [91]. We
leverage Triton auto-tuner to create two kernels: ❶ Exclusive
blocks: 128x128 tile, 2 stages, 8 warps, 1 block per SM (2
warps on each SMSP are of the same block); ❷ Shared blocks:
128x64 tile, 2 stages, 4 warps, 2 blocks per SM (2 warps
on each SMSP can be of different block). The DMAT plot
(aligned with kernel start time) traced by NEUTRINO on A100
are presented in Fig. 1A and Fig. 11a, respectively. Although
these two configurations impose the same computational load
on the SM and offer similar throughput, we can find that their
memory access patterns are significantly different.

For exclusive blocks (Fig. 1A) with frequent synchroniza-
tion, the memory access pattern is structured with a regular
access pattern to K and V, confirming that the algorithm [19]
uses one load for both K and V per main loop. However, for
shared blocks with independent synchronization (Fig. 11a),
the memory access pattern is unexpectedly unstructured with
many tailing blocks (light-colored parts on the right).

To validate the tailing effect, we conduct more in-depth
analysis via the block_sched probe (Fig. 10) to analyze the
elapsed time of blocks. From the CDF of elapsed time in Fig.
14A, we identify that the elapsed time of exclusive blocks is
highly consistent, but varies significantly for sharing blocks
(Fig. 14B) with a tailing effect of up to 24.69%4.

To further explore the tailing latency, we take a closer look
at the program execution progress via probing the bra in-
struction (Fig. 3) that redirects the program to form the main
loop. This probe samples program execution via recording the
timestamp at each branching, which can be used to recover
the timeline of the block’s working progress as shown in
Fig. 14D. Furthermore, by taking the difference between sam-
pled timestamps, we can further recover the intra-block-level
throughput (TFLOP/s) timeline (presented in Fig. 14C).

From the sampled progress and throughput timeline, we
observe an interesting phenomenon that every shared block

4The differences in completion cycles in Fig. 14A (∼220000) and Fig.
14B (∼430000) is from the FlashAttn-v2 algorithm that N is the sequential
dimension, so the latency of two 128x128 tiles (Fig. 1) is equivalent to that
of two 128x64 tiles (Fig. 11a), both handling 256 feature dimensions (M).

Figure 14: ●A CDF of elapsed latency in exclusive blocks;
●B CDF of elapsed latency in shared blocks; ●C GFLOP/s
distribution w.r.t. execution progress from left to right; ●D

Progress timeline of shared blocks, with slope denoting speed.
Every warp in shared blocks first experiences a slow stage (∼
1.8 TFLOP/s) then jumps into a fast stage (∼ 2.2 TFLOP/s).

experiences two stages: a slower stage at around 1.8 TFLOP/s
followed by a faster stage at around 2.2 TFLOP/s till the ter-
mination. Moreover, by aligning the sampled timeline with
start time and CU id, we identify that the transition from slow
stage to fast stage is approximately when previously arrived
shared block (executing at fast stage) terminates, suggesting
an implicit FIFO-like prioritized scheduling policy. This find-
ing explains the sparse-then-dense chaotic behavior in Fig.
11a and violates the common understanding of structured
launch waves shown in Fig. 1A based on the algorithm [19].
Furthermore, we also identify similar effects on other kernels,
e.g., GEMM (Appendix J), with 50.93% tailing effect and
jumping from ∼ 5 TFLOP/s to ∼ 7.5 TFLOP/s, spotlighting
the prevalence of the tailing effect in shared blocks.

Regarding the performance, both exclusive and shared
blocks are not optimal, yet have different performance statis-
tics. Sharing blocks experience poor cache behavior due to the
random-like memory access pattern, which can be verified by
5.85x higher stall cycles due to L1 miss from hardware profil-
ers [55] in Tab. 4. Quite the opposite, exclusive blocks are so
synchronized that they exhibit considerably peaked memory
usage (Fig. 1B) and suffer from 4.47x higher exposed stall
cycles due to memory bus busy and similarly, 1.45x more
stall cycles for compute pipeline contention, both implying
potential space for performance optimizations.

Table 4: Exposed stall cycles and reasons of FlashAttn-v2
under exclusive and shared blocks, collected from the Nsight
Compute [58] PC Sampling.

Stall Reason Exclusive Block Shared Block

long_scoreboard (Waiting Global Memory) 41,055 268,941 (5.85x)
mio_throttle (Memory I/O High Pressure) 303,694 (4.47x) 68,005
math_pipe_throttle (Compute Unit Busy) 616,913 (1.45x) 425,026

8 Discussion and Future Work

NEUTRINO and GPU Scheduling: While we demonstrate
the significance of NEUTRINO in revealing new insights
from the runtime scheduling behavior in §4.6 and §7, cur-
rent experiments are still far from completely understanding
or reverse-engineering the GPU scheduling policies. This is
because GPU scheduling is hardware-implemented, unlike
OS schedulers like CFS or EEVDF [83,97], and is multi-level,
including stream-, block-, and the finest warp-level instruction
scheduling. Moreover, as a shared system, the behavior of the
scheduler will be highly affected by runtime dynamics, which
can also be reflected by the randomness of DMAT.
Impact of GPU Sharing: GPU sharing, i.e., concurrently
executing multiple kernels, is a practical solution to utilize
the GPU. Such sharing can be intra-process via CUDA/HIP
streams, inter-process via MPS (Multi-Process Service), or
with resource isolation via MIG (Multi-Instance GPU). NEU-
TRINO is currently thread-local (will block thread until kernel
finishes) and the scope is process-local (only profile the ex-
ecution of the local process in MPS or MIG). We keep the
impact of sharing as an interesting future direction.
Completeness of Probe Verification: We identified and pro-
hibited three key factors of unsafe probes in §3.4, yet the cur-
rent verification is not complete. ❶ There remain uncovered
security factors, such as unreachable synchronization points
that could pause programs. ❷ Current verification might be
too strong, e.g., jmp could be supported if the target is within
the probe [24]. GPU-kernel verification itself remains an open
research problem, and existing works only address several
perspectives, such as synchronization [76] or data races [40].
Thus, we keep probe verification as future work.
Abnormal Speedup of Probed Kernel: As shown in Tab. 3,
NEUTRINO’s probed kernel might present better performance
than the original kernel. Based on in-depth experiments (Ap-
pendix K), we attribute the speedup to the assembler opti-
mization. In addition to translating assembly into machine
code, modern assemblers also incorporate many optimiza-
tions, such as reordering instructions for better execution flow
and merging reusable registers based on dependency tracking.
Our analysis in Appendix K demonstrates that NEUTRINO
probe’s additional registers and instructions may change reg-
ister dependencies and can lead to better execution flow (with
5.88% IPC improvement) and better performance (up to 0.94x
faster). We believe this counterintuitive observation promises
new opportunities since assemblers and machine code are not
widely explored due to their hardware-oriented nature. For
example, recently, DeepSeek’s DeepGEMM [100] reported
10% speedup by flipping a control bit in machine code.
Towards Hardware-Software Profiler: As a pure-software
profiling system primarily based on the assembly layer, NEU-
TRINO cannot profile unprogrammable hardware events such
as the cache miss, although the DMAT trace can be used
for cache simulation [98]. Furthermore, its profiling is based

on execution, so it is hard to trace stall cycles, i.e., no in-
struction scheduled, but it can still help diagnose stall cy-
cles caused by memory I/O. Despite these drawbacks, NEU-
TRINO can be an excellent complement to current hardware-
dependent and kernel-exclusive kernel profilers by fusing the
missing information on both sides. Moreover, from the big
picture of observability, the multi-scale probing feature of
NEUTRINO makes it an intermediate to bridge the gap be-
tween architecture-level hardware profilers [7, 55, 58] and
application-level software profilers [12, 87]. Hence, we keep
it as an exciting direction to integrate platform-specific hard-
ware profilers and framework-specific software profilers to
build a unified framework for GPU kernel profiling.

9 Related Work

GPU Hardware Profiler: Current GPU kernel profiling sys-
tems, such as NVIDIA NSight [58] / CUPTI [55] or AMD
RGP [7] / GPA [5], are hardware-dependent that profiling
features require corresponding hardware implementation sup-
port, such as performance counters like cache hit/miss rate.
These features, though unique, are hard to adapt to new hard-
ware, e.g., async tensor core that makes utilization metric [81]
less reliable as computation is offloaded from threads to ten-
sor cores. Moreover, they cannot be flexibly customized to
meet the needs of developers. For example, hardware profil-
ers can only profile the entire program in a sampling-based
manner with low sampling frequency to control overhead in
performance and resources, limiting its capability to trace
user-specified events. Instead, NEUTRINO limits the profil-
ing targets to only the desired tracepoints, achieving both
fine-grained event tracing and low system overhead.
GPU Software Profiler: Other framework-specific software
profilers, such as the built-in profiler of PyTorch [87] and
JAX [27], are kernel-exclusive and can only capture higher-
level events, like measuring memory events (alloc/free)
or timing the whole kernel (FLOP/s). Instead, NEUTRINO
focuses on intra-kernel profiling at the instruction level.
GPU Micro-Benchmarking: Motivated to understand hard-
ware design, GPU micro-benchmarking [1,38,51,64,85] tries
to profile the idealized performance of specific hardware via
specially designed workloads that only consist of interested
instructions, such as mma to benchmark tensor core, without
any other instructions (even those necessary in real workload,
such as ld to read data) to reduce disturbance. Instead, NEU-
TRINO aims to measure the performance of real workloads,
rather than idealized workloads.
GPU Simulation: Another way to understand the perfor-
mance is to use simulators [9,32,42,49,92] that emulate GPU
execution at the cycle level on a CPU. The major problems
of these simulators lie in the speed of both running simula-
tions (which might need several days) and support for new
hardware features and instructions (which might take several
years). Moreover, various runtime dynamics, e.g., timing an

instruction, may not be accurately profiled on simulators.
GPU Instrumentation: Binary instrumentation [15,24, 50,
74] that injects code, functions or interrupts, with program
states as parameters has been proven powerful in building per-
formance tools on the CPU. There are also some GPU binary
instrumentation tools in compile-time such as Ocelot [23],
HIPAnalyzer [21], CUDAAdvisor [77], CUDAFlux [14], or
in runtime such as SASSI [82], NVBit [93] and GTPin [80].
Though compiler-based approaches may benefit from addi-
tional information in compilation, they are bound to a specific
compiler, module, or IR, lacking generalizability. They also
require source codes, limiting its compatibility with exist-
ing frameworks. Runtime approaches directly operating on
machine code lacks sufficient virtualization, so they mostly
rely on the protection of the stack via injecting pure device
function, which prohibits cooperation between probes for ad-
vanced usages, making them hard to perform tasks such as
timing instruction (subtracting two clock readings) because
the start time has been cleared on return and is not visible in
the end timer’s context. NEUTRINO persists runtime, rather
than compiler, to advance its generalizability and targets par-
allel assemblies, other than machine code, to support more ad-
vanced and complex profiling tasks with cooperative probes.

10 Conclusion

The rapid development of AI systems has fostered an urgent
need for comprehensive insights through advanced GPU ker-
nel profiling. To address this, we present NEUTRINO, a GPU
assembly probing infrastructure that enables fine-grained, ver-
satile, and programmable GPU kernel runtime profiling with
its distinct probe design of snippet, tracepoint, and map. We
implement NEUTRINO, consisting of the hook driver, probe
engine, and DSL compiler, for the CUDA and ROCm ecosys-
tems. We introduce the novel Densified Memory Access Time-
line (DMAT) to effectively visualize comprehensive GPU
memory access patterns. We conduct extensive experiments,
validating NEUTRINO’s reliability, low overhead, and applica-
bility. Additionally, we conduct a case study on the impacts
of synchronization, successfully pinpointing performance bot-
tlenecks with new insights gained by NEUTRINO. To maxi-
mize the potentials of NEUTRINO, we have open-sourced it at
https://github.com/open-neutrino/neutrino and plan
to build a collaborative community to support its continuous
growth towards a unified framework for GPU kernel profiling.

Acknowledgement

We thank our shepherd, Xiaosong Ma, and the anonymous re-
viewers for their valuable feedback. We also thank Sheng Lyu,
Manwen Liao, and Weiying Hou for the constructive discus-
sion. This work is supported by NSFC Grant No. 62222216
and Hong Kong RGC ECS Grant No. 27204522.

https://github.com/open-neutrino/neutrino

References

[1] Hamdy Abdelkhalik, Yehia Arafa, Nandakishore San-
thi, and Abdel-Hameed Badawy. Demystifying the
nvidia ampere architecture through microbenchmark-
ing and instruction-level analysis, 2022.

[2] Chih-Chieh Yang Adnan Hoque, Less Wright. Deep
Dive on the Hopper TMA Unit for FP8 GEMMs.
https://pytorch.org/blog/hopper-tma-unit/,
2024.

[3] Amey Agrawal, Nitin Kedia, Ashish Panwar, Jayashree
Mohan, Nipun Kwatra, Bhargav Gulavani, Alexey
Tumanov, and Ramachandran Ramjee. Taming
Throughput-Latency tradeoff in LLM inference with
Sarathi-Serve. In 18th USENIX Symposium on Oper-
ating Systems Design and Implementation, OSDI ’24,
pages 117–134, Santa Clara, CA, July 2024.

[4] AMD. GCN Assembly. https://gpuopen.com/
learn/amdgcn-assembly/, 2024.

[5] AMD. GPU Performance API. https://gpuopen.
com/gpuperfapi/, 2024.

[6] AMD. HCC Compiler for ROCm. https://github.
com/ROCm/hcc, 2024.

[7] AMD. Radeon GPU Profiler. https://gpuopen.com/
rgp/, 2024.

[8] Jason Ansel et al. Pytorch 2: Faster machine learning
through dynamic python bytecode transformation and
graph compilation. In the 29th ACM International
Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 2, ASPLOS
’24, page 929–947, New York, NY, USA, 2024.

[9] Yuhui Bao, Yifan Sun, Zlatan Feric, Michael Tian Shen,
Micah Weston, José L. Abellán, Trinayan Baruah, John
Kim, Ajay Joshi, and David Kaeli. Navisim: A highly
accurate gpu simulator for amd rdna gpus. In the In-
ternational Conference on Parallel Architectures and
Compilation Techniques, PACT ’22, page 333–345,
New York, NY, USA, 2023.

[10] L. A. Belady. A study of replacement algorithms
for a virtual-storage computer. IBM Systems Journal,
5(2):78–101, 1966.

[11] L. A. Belady, R. A. Nelson, and G. S. Shedler. An
anomaly in space-time characteristics of certain pro-
grams running in a paging machine. Commun. ACM,
12(6):349–353, June 1969.

[12] Emery D. Berger, Sam Stern, and Juan Altmayer Piz-
zorno. Triangulating python performance issues with

Scalene. In 17th USENIX Symposium on Operating
Systems Design and Implementation, OSDI ’23, pages
51–64, Boston, MA, July 2023.

[13] bpftrace: High-level tracing language for Linux.
https://github.com/bpftrace/bpftrace, 2025.

[14] Lorenz Braun and Holger Fröning. Cuda flux: A
lightweight instruction profiler for cuda applications.
In 2019 IEEE/ACM Performance Modeling, Bench-
marking and Simulation of High Performance Com-
puter Systems (PMBS), pages 73–81, 2019.

[15] Derek Bruening, Timothy Garnett, and Saman Ama-
rasinghe. An infrastructure for adaptive dynamic op-
timization. In the International Symposium on Code
Generation and Optimization: Feedback-Directed and
Runtime Optimization, CGO ’03, page 265–275, USA,
2003.

[16] Chang Chen, Xiuhong Li, Qianchao Zhu, Jiangfei
Duan, Peng Sun, Xingcheng Zhang, and Chao
Yang. Centauri: Enabling efficient scheduling for
communication-computation overlap in large model
training via communication partitioning. In the 29th
ACM International Conference on Architectural Sup-
port for Programming Languages and Operating Sys-
tems, Volume 3, ASPLOS ’24, page 178–191, New
York, NY, USA, 2024.

[17] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin
Zheng, Eddie Yan, Meghan Cowan, Haichen Shen,
Leyuan Wang, Yuwei Hu, Luis Ceze, Carlos Guestrin,
and Arvind Krishnamurthy. Tvm: an automated end-to-
end optimizing compiler for deep learning. In the 13th
USENIX Conference on Operating Systems Design and
Implementation, OSDI’18, page 579–594, USA, 2018.

[18] Inho Cho, Seo Jin Park, Ahmed Saeed, Mohammad
Alizadeh, and Adam Belay. LDB: An efficient la-
tency profiling tool for multithreaded applications. In
21st USENIX Symposium on Networked Systems De-
sign and Implementation, NSDI ’24, pages 1497–1510,
Santa Clara, CA, April 2024.

[19] Tri Dao. FlashAttention-2: Faster attention with better
parallelism and work partitioning. In International
Conference on Learning Representations, ICLR ’24,
2024.

[20] Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra,
and Christopher Ré. Flashattention: Fast and memory-
efficient exact attention with io-awareness, 2022.

[21] Sébastien Darche and Michel R. Dagenais. Low-
overhead trace collection and profiling on gpu compute
kernels. ACM Trans. Parallel Comput., 11(2), June
2024.

https://pytorch.org/blog/hopper-tma-unit/
https://gpuopen.com/learn/amdgcn-assembly/
https://gpuopen.com/learn/amdgcn-assembly/
https://gpuopen.com/gpuperfapi/
https://gpuopen.com/gpuperfapi/
https://github.com/ROCm/hcc
https://github.com/ROCm/hcc
https://gpuopen.com/rgp/
https://gpuopen.com/rgp/
https://github.com/bpftrace/bpftrace

[22] Peter J. Denning. Working set analytics. ACM Comput.
Surv., 53(6), February 2021.

[23] Gregory Frederick Diamos, Andrew Robert Kerr, Sud-
hakar Yalamanchili, and Nathan Clark. Ocelot: a dy-
namic optimization framework for bulk-synchronous
applications in heterogeneous systems. In the 19th In-
ternational Conference on Parallel Architectures and
Compilation Techniques, PACT ’10, page 353–364,
New York, NY, USA, 2010.

[24] eBPF. https://ebpf.io, 2024.

[25] Executable and Linkable Format. https:
//en.wikipedia.org/wiki/Executable_and_
Linkable_Format, 2024.

[26] Unified Acceleration Foundation. oneAPI Program-
ming Model. https://oneapi.io/, 2025.

[27] Roy Frostig, Matthew James Johnson, and Chris Leary.
Compiling machine learning programs via high-level
tracing. Systems for Machine Learning, 4(9), 2018.

[28] Elazar Gershuni, Nadav Amit, Arie Gurfinkel, Nina
Narodytska, Jorge A. Navas, Noam Rinetzky, Leonid
Ryzhyk, and Mooly Sagiv. Simple and precise static
analysis of untrusted linux kernel extensions. In the
40th ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, PLDI ’19, page
1069–1084, New York, NY, USA, 2019.

[29] Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri,
and Abhinav Pandey et.al. The llama 3 herd of models,
2024.

[30] Khronos Group. SPIR: The Standard IR for Parallel
Compute and Graphics. https://www.khronos.org/
spir/, 2024.

[31] Albert Gu and Tri Dao. Mamba: Linear-time sequence
modeling with selective state spaces, 2024.

[32] Anthony Gutierrez, Bradford M. Beckmann, Alexan-
dru Dutu, Joseph Gross, Michael LeBeane, John Kala-
matianos, Onur Kayiran, Matthew Poremba, Brandon
Potter, Sooraj Puthoor, Matthew D. Sinclair, Mark
Wyse, Jieming Yin, Xianwei Zhang, Akshay Jain, and
Timothy Rogers. Lost in abstraction: Pitfalls of analyz-
ing gpus at the intermediate language level. In 2018
IEEE International Symposium on High Performance
Computer Architecture, HPCA ’18, pages 608–619,
2018.

[33] Troy D. Hanson and Arthur O’Dwyer. uthash. https:
//troydhanson.github.io/uthash/, 2024.

[34] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition,
2015.

[35] Guyue Huang, Yang Bai, Liu Liu, Yuke Wang, Bei Yu,
Yufei Ding, and Yuan Xie. Alcop: Automatic load-
compute pipelining in deep learning compiler for ai-
gpus. In D. Song, M. Carbin, and T. Chen, editors,
the Machine Learning and Systems, volume 5, pages
680–694. Curan, 2023.

[36] Abhinav Jangda, Jun Huang, Guodong Liu, Amir Hos-
sein Nodehi Sabet, Saeed Maleki, Youshan Miao,
Madanlal Musuvathi, Todd Mytkowicz, and Olli
Saarikivi. Breaking the computation and communica-
tion abstraction barrier in distributed machine learning
workloads. In the 27th ACM International Conference
on Architectural Support for Programming Languages
and Operating Systems, ASPLOS ’22, page 402–416,
New York, NY, USA, 2022.

[37] Suhas Jayaram Subramanya, Daiyaan Arfeen, Shouxu
Lin, Aurick Qiao, Zhihao Jia, and Gregory R. Ganger.
Sia: Heterogeneity-aware, goodput-optimized ml-
cluster scheduling. In the 29th Symposium on Op-
erating Systems Principles, SOSP ’23, page 642–657,
New York, NY, USA, 2023.

[38] Zhe Jia, Marco Maggioni, Jeffrey Smith, and
Daniele Paolo Scarpazza. Dissecting the nvidia turing
t4 gpu via microbenchmarking, 2019.

[39] S. Jourdan, R. Ronen, M. Bekerman, B. Shomar, and
A. Yoaz. A novel renaming scheme to exploit value
temporal locality through physical register reuse and
unification. In the 31st Annual ACM/IEEE Interna-
tional Symposium on Microarchitecture, MICRO ’98,
pages 216–225, 1998.

[40] Aditya K. Kamath and Arkaprava Basu. iguard: In-gpu
advanced race detection. In the ACM SIGOPS 28th
Symposium on Operating Systems Principles, SOSP
’21, page 49–65, New York, NY, USA, 2021.

[41] Jared Kaplan, Sam McCandlish, Tom Henighan,
Tom B. Brown, Benjamin Chess, Rewon Child, Scott
Gray, Alec Radford, Jeffrey Wu, and Dario Amodei.
Scaling laws for neural language models, 2020.

[42] Mahmoud Khairy, Zhesheng Shen, Tor M. Aamodt,
and Timothy G. Rogers. Accel-sim: an extensible
simulation framework for validated gpu modeling. In
the ACM/IEEE 47th Annual International Symposium
on Computer Architecture, ISCA ’20, page 473–486.
IEEE Press, 2020.

https://ebpf.io
https://en.wikipedia.org/wiki/Executable_and_Linkable_Format
https://en.wikipedia.org/wiki/Executable_and_Linkable_Format
https://en.wikipedia.org/wiki/Executable_and_Linkable_Format
https://oneapi.io/
https://www.khronos.org/spir/
https://www.khronos.org/spir/
https://troydhanson.github.io/uthash/
https://troydhanson.github.io/uthash/

[43] Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph Gon-
zalez, Hao Zhang, and Ion Stoica. Efficient memory
management for large language model serving with
pagedattention. In the 29th Symposium on Operat-
ing Systems Principles, SOSP ’23, page 611–626, New
York, NY, USA, 2023.

[44] Chris Lattner and Vikram Adve. Llvm: A compila-
tion framework for lifelong program analysis & trans-
formation. In the International Symposium on Code
Generation and Optimization: Feedback-Directed and
Runtime Optimization, CGO ’04, page 75, USA, 2004.

[45] Chris Lattner, Mehdi Amini, Uday Bondhugula, Albert
Cohen, Andy Davis, Jacques Pienaar, River Riddle, Ta-
tiana Shpeisman, Nicolas Vasilache, and Oleksandr
Zinenko. MLIR: Scaling compiler infrastructure for
domain specific computation. In 2021 IEEE/ACM
International Symposium on Code Generation and Op-
timization, CGO ’21, pages 2–14, 2021.

[46] Adnan Hoque Less Wright. Deep Dive on Cutlass
Ping-Pong GEMM Kernel. https://pytorch.org/
blog/cutlass-ping-pong-gemm-kernel/, 2024.

[47] Zhuohan Li, Lianmin Zheng, Yinmin Zhong, Vincent
Liu, Ying Sheng, Xin Jin, Yanping Huang, Zhifeng
Chen, Hao Zhang, Joseph E. Gonzalez, and Ion Sto-
ica. AlpaServe: Statistical multiplexing with model
parallelism for deep learning serving. In 17th USENIX
Symposium on Operating Systems Design and Imple-
mentation, OSDI ’23, pages 663–679, Boston, MA,
July 2023.

[48] Chang Liu, Byungchul Tak, and Long Wang. Un-
derstanding performance of ebpf maps. In the ACM
SIGCOMM 2024 Workshop on EBPF and Kernel Ex-
tensions, eBPF ’24, page 9–15, New York, NY, USA,
2024.

[49] Changxi Liu, Yifan Sun, and Trevor E. Carlson. Pho-
ton: A fine-grained sampled simulation methodology
for gpu workloads. In the 56th Annual IEEE/ACM In-
ternational Symposium on Microarchitecture, MICRO
’23, page 1227–1241, New York, NY, USA, 2023.

[50] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish
Patil, Artur Klauser, Geoff Lowney, Steven Wallace,
Vijay Janapa Reddi, and Kim Hazelwood. Pin: building
customized program analysis tools with dynamic in-
strumentation. In the 2005 ACM SIGPLAN Conference
on Programming Language Design and Implementa-
tion, PLDI ’05, page 190–200, New York, NY, USA,
2005.

[51] Xinxin Mei and Xiaowen Chu. Dissecting gpu memory
hierarchy through microbenchmarking. IEEE Transac-
tions on Parallel and Distributed Systems, 28(1):72–86,
2017.

[52] Kelvin K. W. Ng, Henri Maxime Demoulin, and Vin-
cent Liu. Paella: Low-latency model serving with
software-defined gpu scheduling. In the 29th Sympo-
sium on Operating Systems Principles, SOSP ’23, page
595–610, New York, NY, USA, 2023.

[53] NVIDIA. CUDA C++. hhttps://docs.nvidia.
com/cuda/cuda-c-programming-guide/, 2024.

[54] NVIDIA. CUDA Compiler Driver
NVCC. https://docs.nvidia.com/cuda/
cuda-compiler-driver-nvcc/, 2024.

[55] NVIDIA. Cuda profiling tools interface. https://
docs.nvidia.com/cupti/index.html, 2024.

[56] NVIDIA. Fat Binaries. https://docs.nvidia.com/
cuda/nvfatbin/index.html, 2024.

[57] NVIDIA. Instruction Set Reference. https://docs.
nvidia.com/cuda/cuda-binary-utilities/
index.html#instruction-set-reference, 2024.

[58] NVIDIA. NSight Compute System. https://
developer.nvidia.com/nsight-compute, 2024.

[59] NVIDIA. NVTX: NVIDIA Tools Extension SDK.
https://github.com/NVIDIA/NVTX, 2025.

[60] NVIDIA. PTX ISA 8.5. https://docs.nvidia.com/
cuda/parallel-thread-execution, 2024.

[61] NVIDIA. PTXAS. https://docs.nvidia.com/
cuda/cuda-compiler-driver-nvcc/, 2024.

[62] NVIDIA. TensorRT. https://developer.nvidia.
com/tensorrt, 2024.

[63] Muhammad Osama, Duane Merrill, Cris Cecka,
Michael Garland, and John D. Owens. Stream-k: Work-
centric parallel decomposition for dense matrix-matrix
multiplication on the gpu. In the 28th ACM SIGPLAN
Annual Symposium on Principles and Practice of Par-
allel Programming, PPoPP ’23, page 429–431, New
York, NY, USA, 2023.

[64] M-M Papadopoulou, Maryam Sadooghi-Alvandi, and
Henry Wong. Micro-benchmarking the gt200 gpu.
Computer Group, ECE, University of Toronto, Tech.
Rep, 2009.

[65] Jay H. Park, Gyeongchan Yun, Chang M. Yi, Nguyen T.
Nguyen, Seungmin Lee, Jaesik Choi, Sam H. Noh, and

https://pytorch.org/blog/cutlass-ping-pong-gemm-kernel/
https://pytorch.org/blog/cutlass-ping-pong-gemm-kernel/
hhttps://docs.nvidia.com/cuda/cuda-c-programming-guide/
hhttps://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/
https://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/
https://docs.nvidia.com/cupti/index.html
https://docs.nvidia.com/cupti/index.html
https://docs.nvidia.com/cuda/nvfatbin/index.html
https://docs.nvidia.com/cuda/nvfatbin/index.html
https://docs.nvidia.com/cuda/cuda-binary-utilities/index.html#instruction-set-reference
https://docs.nvidia.com/cuda/cuda-binary-utilities/index.html#instruction-set-reference
https://docs.nvidia.com/cuda/cuda-binary-utilities/index.html#instruction-set-reference
https://developer.nvidia.com/nsight-compute
https://developer.nvidia.com/nsight-compute
https://github.com/NVIDIA/NVTX
https://docs.nvidia.com/cuda/parallel-thread-execution
https://docs.nvidia.com/cuda/parallel-thread-execution
https://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/
https://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/
https://developer.nvidia.com/tensorrt
https://developer.nvidia.com/tensorrt

Young ri Choi. HetPipe: Enabling large DNN train-
ing on (whimpy) heterogeneous GPU clusters through
integration of pipelined model parallelism and data
parallelism. In 2020 USENIX Annual Technical Con-
ference, ATC ’20, pages 307–321, July 2020.

[66] Mathias Payer, Enrico Kravina, and Thomas R. Gross.
Lightweight memory tracing. In 2013 USENIX Annual
Technical Conference, ATC ’13, pages 115–126, San
Jose, CA, June 2013.

[67] Yanghua Peng, Yibo Zhu, Yangrui Chen, Yixin Bao,
Bairen Yi, Chang Lan, Chuan Wu, and Chuanxiong
Guo. A generic communication scheduler for dis-
tributed dnn training acceleration. In the 27th ACM
Symposium on Operating Systems Principles, SOSP
’19, page 16–29, New York, NY, USA, 2019.

[68] Tom Preston-Werner and Pradyun Gedam. TOML.
https://toml.io/en/, 2024.

[69] Markus N. Rabe and Charles Staats. Self-attention
does not need o(n2) memory, 2022.

[70] Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase,
and Yuxiong He. Zero: memory optimizations toward
training trillion parameter models. In the Interna-
tional Conference for High Performance Computing,
Networking, Storage and Analysis, SC ’20. IEEE Press,
2020.

[71] Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. High-resolution im-
age synthesis with latent diffusion models, 2022.

[72] A. Roth and G.S. Sohi. Register integration: a simple
and efficient implementation of squash reuse. In the
33rd Annual IEEE/ACM International Symposium on
Microarchitecture., MICRO ’33, pages 223–234, 2000.

[73] Gabin Schieffer, Daniel Araújo De Medeiros, Jennifer
Faj, Aniruddha Marathe, and Ivy Peng. On the rise
of amd matrix cores: Performance, power efficiency,
and programmability. In 2024 IEEE International
Symposium on Performance Analysis of Systems and
Software, ISPASS ’24, pages 132–143, 2024.

[74] Julian Seward and Nicholas Nethercote. Using
valgrind to detect undefined value errors with Bit-
Precision. In 2005 USENIX Annual Technical Con-
ference, ATC ’05, Anaheim, CA, April 2005.

[75] Jay Shah, Ganesh Bikshandi, Ying Zhang, Vijay
Thakkar, Pradeep Ramani, and Tri Dao. Flashattention-
3: Fast and accurate attention with asynchrony and
low-precision, 2024.

[76] Rahul Sharma, Michael Bauer, and Alex Aiken. Verifi-
cation of producer-consumer synchronization in gpu
programs. SIGPLAN Not., 50(6):88–98, June 2015.

[77] Du Shen, Shuaiwen Leon Song, Ang Li, and Xu Liu.
Cudaadvisor: Llvm-based runtime profiling for modern
gpus. In the 2018 International Symposium on Code
Generation and Optimization, CGO ’18, page 214–227,
New York, NY, USA, 2018.

[78] Yining Shi, Zhi Yang, Jilong Xue, Lingxiao Ma,
Yuqing Xia, Ziming Miao, Yuxiao Guo, Fan Yang,
and Lidong Zhou. Welder: Scheduling deep learn-
ing memory access via tile-graph. In 17th USENIX
Symposium on Operating Systems Design and Imple-
mentation, OSDI ’23, pages 701–718, Boston, MA,
July 2023.

[79] Mohammad Shoeybi, Mostofa Patwary, Raul Puri,
Patrick LeGresley, Jared Casper, and Bryan Catanzaro.
Megatron-lm: Training multi-billion parameter lan-
guage models using model parallelism, 2020.

[80] Alex Skaletsky, Konstantin Levit-Gurevich, Michael
Berezalsky, Yulia Kuznetcova, and Hila Yakov. Flexi-
ble binary instrumentation framework to profile code
running on intel gpus. In 2022 IEEE International
Symposium on Performance Analysis of Systems and
Software, ISPASS ’22, pages 109–120, 2022.

[81] Benjamin Spector, Aaryan Singhal, Simran Arora, and
Chris Re. GPUs Go Brrr. https://hazyresearch.
stanford.edu/blog/2024-05-12-tk, 2024.

[82] Mark Stephenson, Siva Kumar Sastry Hari, Yunsup
Lee, Eiman Ebrahimi, Daniel R. Johnson, David Nel-
lans, Mike O’Connor, and Stephen W. Keckler. Flex-
ible software profiling of gpu architectures. In 2015
ACM/IEEE 42nd Annual International Symposium on
Computer Architecture, ISCA ’15, pages 185–197,
2015.

[83] I. Stoica and H. Abdel-Wahab. Earliest eligible vir-
tual deadline first : A flexible and accurate mechanism
for proportional share resource allocation. Technical
report, Old Dominion University, USA, 1995.

[84] Hao Sun and Zhendong Su. Validating the eBPF ver-
ifier via state embedding. In 18th USENIX Sympo-
sium on Operating Systems Design and Implementa-
tion, OSDI ’24, pages 615–628, Santa Clara, CA, July
2024.

[85] Wei Sun, Ang Li, Tong Geng, Sander Stuijk, and Henk
Corporaal. Dissecting tensor cores via microbench-
marks: Latency, throughput and numeric behaviors.
IEEE Transactions on Parallel and Distributed Sys-
tems, 34(1):246–261, January 2023.

https://toml.io/en/
https://hazyresearch.stanford.edu/blog/2024-05-12-tk
https://hazyresearch.stanford.edu/blog/2024-05-12-tk

[86] LLVM Team. LLVM PTX Backend. https://llvm.
org/docs/NVPTXUsage.html, 2024.

[87] PyTorch Team. PyTorch Profiler. https:
//pytorch.org/tutorials/recipes/recipes/
profiler_recipe.html, 2024.

[88] PyTorch Team. PyTorch Vectorized Element-
wise Kernel. https://github.com/pytorch/
pytorch/blob/main/aten/src/ATen/native/
cuda/CUDALoops.cuh, 2024.

[89] Vijay Thakkar, Pradeep Ramani, Cris Cecka, Aniket
Shivam, Honghao Lu, Ethan Yan, Jack Kosaian, Mark
Hoemmen, Haicheng Wu, Andrew Kerr, Matt Nicely,
Duane Merrill, Dustyn Blasig, Fengqi Qiao, Piotr Ma-
jcher, Paul Springer, Markus Hohnerbach, Jin Wang,
and Manish Gupta. CUTLASS, January 2023.

[90] Dave Thaler. BPF Instruction Set Architec-
ture (ISA). https://www.rfc-editor.org/info/
rfc9669, 2024.

[91] Philippe Tillet, H. T. Kung, and David Cox. Triton:
an intermediate language and compiler for tiled neu-
ral network computations. In the 3rd ACM SIGPLAN
International Workshop on Machine Learning and Pro-
gramming Languages, MAPL ’19, page 10–19, New
York, NY, USA, 2019.

[92] Oreste Villa, Daniel Lustig, Zi Yan, Evgeny Bolotin,
Yaosheng Fu, Niladrish Chatterjee, Nan Jiang, and
David Nellans. Need for speed: Experiences build-
ing a trustworthy system-level gpu simulator. In 2021
IEEE International Symposium on High-Performance
Computer Architecture, HPCA ’21, pages 868–880,
2021.

[93] Oreste Villa, Mark Stephenson, David Nellans, and
Stephen W. Keckler. Nvbit: A dynamic binary instru-
mentation framework for nvidia gpus. In the 52nd
Annual IEEE/ACM International Symposium on Mi-
croarchitecture, MICRO ’52, page 372–383, New York,
NY, USA, 2019.

[94] Patrick von Platen, Suraj Patil, Anton Lozhkov, Pe-
dro Cuenca, Nathan Lambert, Kashif Rasul, Mishig
Davaadorj, Dhruv Nair, Sayak Paul, William Berman,
Yiyi Xu, Steven Liu, and Thomas Wolf. Diffusers:
State-of-the-art diffusion models. https://github.
com/huggingface/diffusers, 2022.

[95] Samuel Williams, Andrew Waterman, and David Pat-
terson. Roofline: an insightful visual performance
model for multicore architectures. Commun. ACM,
52(4):65–76, April 2009.

[96] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pierric
Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe
Davison, Sam Shleifer, Patrick von Platen, Clara Ma,
Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao,
Sylvain Gugger, Mariama Drame, Quentin Lhoest, and
Alexander M. Rush. Transformers: State-of-the-art nat-
ural language processing. In the 2020 Conference on
Empirical Methods in Natural Language Processing:
System Demonstrations, pages 38–45, Online, October
2020.

[97] Chee Siang Wong, Ian Tan, Rosalind Deena Kumari,
and Fun Wey. Towards achieving fairness in the linux
scheduler. SIGOPS Oper. Syst. Rev., 42(5):34–43, July
2008.

[98] Juncheng Yang, Yao Yue, and K. V. Rashmi. A large
scale analysis of hundreds of in-memory cache clusters
at twitter. In 14th USENIX Symposium on Operating
Systems Design and Implementation, OSDI ’20, pages
191–208, 2020.

[99] Gyeong-In Yu, Joo Seong Jeong, Geon-Woo Kim, Soo-
jeong Kim, and Byung-Gon Chun. Orca: A distributed
serving system for Transformer-Based generative mod-
els. In 16th USENIX Symposium on Operating Systems
Design and Implementation, OSDI ’22, pages 521–538,
Carlsbad, CA, July 2022.

[100] Chenggang Zhao, Liang Zhao, Jiashi Li, and Zhean
Xu. DeepGEMM: clean and efficient FP8 GEMM
kernels with fine-grained scaling. https://github.
com/deepseek-ai/DeepGEMM, 2025.

https://llvm.org/docs/NVPTXUsage.html
https://llvm.org/docs/NVPTXUsage.html
https://pytorch.org/tutorials/recipes/recipes/profiler_recipe.html
https://pytorch.org/tutorials/recipes/recipes/profiler_recipe.html
https://pytorch.org/tutorials/recipes/recipes/profiler_recipe.html
https://github.com/pytorch/pytorch/blob/main/aten/src/ATen/native/cuda/CUDALoops.cuh
https://github.com/pytorch/pytorch/blob/main/aten/src/ATen/native/cuda/CUDALoops.cuh
https://github.com/pytorch/pytorch/blob/main/aten/src/ATen/native/cuda/CUDALoops.cuh
https://www.rfc-editor.org/info/rfc9669
https://www.rfc-editor.org/info/rfc9669
https://github.com/huggingface/diffusers
https://github.com/huggingface/diffusers
https://github.com/deepseek-ai/DeepGEMM
https://github.com/deepseek-ai/DeepGEMM

A Artifact Appendix

A.1 Abstract
The artifact of NEUTRINO is hosted at GitHub (in branch
artifact), containing the source code, installation/collec-
tion/analysis scripts, collected traces that reproduce all the
evaluation results in our paper. We also package the artifact
evaluation as Jupyter Notebooks hosted on Google Colab,
offering one-click results reproduction without local runtime
setup. In addition, we also maintain an online documenta-
tion of NEUTRINO containing project highlights, user guides,
roadmaps, and references for evaluating the functionality.

Artifact Claim: The collected traces and the codes are
identical to our paper’s corresponding description. You can
replicate all the major results using the traces and analysis
codes we provided (details in the Expected Results section
below). We also provide the trace collection code for you
to collect your own traces on your own devices. It’s worth
noticing that customized traces, particularly DMAT, can only
yield similar results due to hardware and runtime dynamics.

A.2 Scope (meta-information)
• Design: NEUTRINO is a GPU assembly probing tool de-

signed to attach small snippets (probes) to GPU kernels at
runtime to expose runtime execution details (profiling).

• System: NEUTRINO system consists of two parts, the probe
engine to attach code snippets, and the hook driver to cap-
ture GPU kernels launched at runtime. The source code is
available at GitHub and is installable as a Python package.

• Probes: NEUTRINO probes are small TOML files that de-
fine the profiling task via snippet, datamodel, position, and
callback. Probes used in the paper are available at Github.

• Output: Fig. 1, Fig. 10 (A/B/C), Fig. 11, Fig. 12, Fig. 13,
and Table. 2 in the paper.

• Evaluation: We arrange evaluations in notebooks struc-
tured linearly, allowing simple click Runtime -> Run All
execution. Please refer to the README, and instructions
in each Jupyter Notebook (Colab).

• Special Requirements: No special requirements for static
trace analysis, For dynamic trace collection, a NVIDIA
GPU, e.g., A100, and a PTX-included build of PyTorch
v2.5.0 and CUTLASS v3.5.0 are required.

• Disk Space Requiremetns: Evaluating on Google Colab
doesn’t require any disk space. Regarding local evaluation,
please arrange 3GB for static traces and at least 10GB for
collecting dynamic traces.

• Experiment Time Less than 30 minutes for static evalua-
tions analyzing collected traces on CPU, and ≈ 10 hours
for dynamic evaluation collecting traces on GPU.

• Environment Setup Time: For static evaluation, it takes
≈ 2 minutes to download traces. For dynamic evaluation,
it takes ≈ 15 seconds to build NEUTRINO. Setting up

PyTorch and CUTLASS might take ≈ 3 minutes.
• Publicly Available: Yes.
• License: We use the Apache License, Version 2.0 for the

system source code and the CC BY 4.0 license for probes
used in the paper.

A.3 Contents
NEUTRINO’s artifact evaluation is arranged in 6 parts, corre-
sponding to different figures or tables in the paper:

1. block_sched: §4.6
2. dmat: Fig. 1, Fig. 11
3. kernel_overhead: Tab. 3
4. max_mem: Fig. 12
5. exposed_latency: Fig. 13
6. warp_sched: Fig. 14

We arrange each part to correspond to a section in the
Jupyter Notebook. Moreover, each evaluation is provided in
two modes: the static that parses collected traces, suitable for
Getting Started on local CPU-only devices without special
hardware/software requirements, and the dynamic that col-
lects the traces on the real GPU-enabled environment, suitable
for Full Evaluation.

A.4 Hosting and Requirements
A.4.1 How to access

Please choose one of the following to access the artifact:
• Github:

1. Static evaluation: artifact/static.ipynb
2. Dynamic evaluation: artifact/dynamic.ipynb

• Colab:
1. Static evaluation (Use CPU as Runtime) is here.
2. Dynamic evaluation (Use GPU as Runtime) is here.

A.4.2 Hardware Requirement

For static evaluation, only a CPU machine with Python 3
runtime is needed. You don’t need to install NEUTRINO for
static evaluation.

For dynamic evaluation, you will need a NVIDIA GPU
with the CUDA driver installed. Please note:
1. The choice of hardware will significantly affect results:

• Please use RTX3080 for all DMAT plot (Part. 2).
• Please use A100 for all the rest (Part. 1, Part. 3-6).

2. Please make sure no other workload is executing on the
same GPU.

3. Please arrange enough disk space, at least 10GB, for dy-
namic traces collection.

A.4.3 Software Requirements

NEUTRINO system only depends on GNU toolchain (gcc,
file, git, nm), CUDA toolchain (cuobjdump, ptxas) and

https://github.com/open-neutrino/neutrino/tree/artifact
https://open-neutrino.github.io
https://open-neutrino.github.io
https://github.com/open-neutrino/neutrino/tree/artifact/neutrino
https://github.com/open-neutrino/neutrino/tree/artifact/neutrino/tools
https://github.com/open-neutrino/neutrino/blob/artifact/README.md
https://github.com/open-neutrino/neutrino/tree/artifact/artifact/static.ipynb
https://github.com/open-neutrino/neutrino/tree/artifact/artifact/dynamic.ipynb
https://colab.research.google.com/drive/1w2vvjXlOIy00KNwStmSy-rVi2Y0CXfQx?usp=sharing
https://colab.research.google.com/drive/1Ffg5zWZzvsXxb9vuquBvK0cwSf_SReVt?usp=sharing

Python 3.12 (pip, toml). But evaluation workload needs a
PTX-included build of PyTorch and CUTLASS. We package
the dependency checking and installation in prepare_env.py
for one-click installation.

A.4.4 Installation

It’s recommended to use virtual environments, e.g., conda
create -y -n ae_env python=3.11 && conda activate
ae_env, for installation when not using Colab.
Automatic Installation:: We provide a helper script
prepare_env.py that one can python prepare_env.py to
install all dependencies and neutrino. Jupyter Notebooks
(also Google Colab) use this way.
Manual Installation::

1. Clone the Github repository: git clone -b artifact
https://github.com/open-neutrino/neutrino.git

2. Build and install neutrino: cd neutrino && python
setup.py install && cd ..

3. Test installation with neutrino –help
Please refer to the README file for detailed descriptions

on installing PTX-included builds of PyTorch and CUTLASS.

A.5 Evaluation Workflow
A.5.1 Getting Started Instructions

Getting started instructions, taking <30 min, consist of:
1. All static evaluation that reproduces all figures and tables

in the paper based on collected traces.
2. The block_sched section (1st part) of the dynamic evalu-

ation that collects and analyzes the block scheduling traces.
This part takes <1 minute and helps justify the correct
environment setup for detailed instructions.
You can use Colab to execute the evaluation scripts. To do

this, first select the correct Runtime (CPU or GPU as stated
above), then click the Runtime button at the top of the Colab
web page, and click the Run All button in the dropdown menu
to execute the scripts. Each section (of several blocks) can be
executed independently. Statistics or figures will be displayed
below each cell when execution finishes.

If you choose to evaluate locally, please download the
Jupyter Notebooks and follow the same steps as the Colab
execution instructions above.

A.5.2 Detailed Instructions

The detailed instructions cover the rest five sections of the dy-
namic evaluation. They are also packaged in a Jupyter Note-
book (also available on Colab), allowing one-click (Runtime
-> Run All) execution and evaluation. Each section can also
be executed independently. So you can clear up traces after
each section to save disk space.

A.5.3 Expected Results

Static evaluation on collected traces are expected to closely
fit the figures and tables presented in the paper. To save disk
space, we mistakenly deleted the original traces for these re-
sults. And because these results capture the finest runtime
dynamics of the GPU, exact reproduction will be impossi-
ble. Our later experiments can only reproduce similar results.
Please accept our apologies for the inconvenience, and we
will update the revised paper to include the latest results.

Dynamic evaluation on customized traces is expected to
produce similar results, i.e., similar numbers or figure shapes.

A.5.4 Further Evaluation

After completing the above evaluation and reading the docu-
mentation, we recommend several ways for further evaluation:

1. Test your workloads: NEUTRINO supports most GPU
workloads. You can import your GPU kernels (CUDA C++,
Triton, etc) and test them via neutrino <your workload>.
Check more on NEUTRINO’s support here.

2. Test your workloads: First, read the Programmable Probe
guide, write and save your probe in .toml locally, and apply
it using neutrino -p <path/to/probe>.

3. Investigate Implementation: NEUTRINO’s implementa-
tion is well organized, and it’s a good entry to understand
how GPU code dispatches from OS. You can find the imple-
mentation of hook driver in neutrino/src/ and the probe
engine in neutrino/probe/.

A.5.5 Experiments Added in Shepherding

In the shepherding process, we have added several more exper-
iments to address technical comments by reviewers. Though
not required by AE, we also prepare the reproduction code:
• Microbenchmark (Tab. 2): microbench.ipynb
• Global DMAT (Fig. 15): dmat_global.ipynb
• DMAT Slowdown (Fig. 16): dmat_slowdown.ipynb
• Abnormal Speedup (Appendix K): speedup.ipynb

B Hook Driver

Hook driver is implemented via exposing functions of the
same signature and using dlfcn to call the original function
with hooks (lines 6 & 8) left for adding functionalities.

#define REAL_DRIVER ... // path to real driver
static void* dlib = NULL; // dlopen handle
CUresult cuInit(unsigned Flags){ //same signature

if (!dlib) {dlib = dlopen(REAL_DRIVER, RTLD_LAZY);}
CUresult (*real)(unsigned) = dlsym(dlib, "cuInit");
// insert code here := eBPF uprobe
CUresult ret = real(Flags);
// insert code here := eBPF uretprobe
return ret; }

https://github.com/open-neutrino/neutrino/tree/artifact/artifact/prepare_env.py
https://github.com/open-neutrino/neutrino/tree/artifact/artifact/prepare_env.py
https://open-neutrino.github.io/docs/category/installation-and-support
https://github.com/open-neutrino/neutrino/tree/artifact/neutrino/src
https://github.com/open-neutrino/neutrino/tree/artifact/neutrino/probe
https://github.com/open-neutrino/neutrino/blob/artifact/shepherding/microbench.ipynb
https://github.com/open-neutrino/neutrino/blob/artifact/shepherding/dmat_global.ipynb
https://github.com/open-neutrino/neutrino/blob/artifact/shepherding/dmat_slowdown.ipynb
https://github.com/open-neutrino/neutrino/blob/artifact/shepherding/speedup.ipynb

Hook driver is injected into the program via LD_PRELOAD
like above for dynamic loading, e.g., PyTorch, or LD_LIBRARY
for static linking, e.g., Triton. This can also be extended to
filter out proprietary products like cublas for legal safety.

#define REAL_DRIVER ... // filled in make
#define HOOK_DRIVER ... // filled in make
void* dlopen(const char *filename, int flags) {
// RTLD_NEXT -> the real dlopen of libc
real_dlopen = dlsym(RTLD_NEXT, "dlopen");
if (strstr(filename, "libcuda.so.1") != NULL) {

void* tmp[STACK_TRACE_SIZE];
int size = backtrace(tmp, STACK_TRACE_SIZE);
char** syms = backtrace_symbols(tmp, size);
for (int i = 0; i < size; i++) {
// filter proprietaries like cublas
if (strstr(syms[i], "cublas") != NULL)

return dlopen(REAL_DRIVER, flags);
}
return dlopen(HOOK_DRIVER, flags);

}
return dlopen(filename, flags);

}

C Probe Map Planning

Our probe engine will automatically plan the probe map ac-
cording to the definition, e.g., thread:array:8:1. Its mech-
anism is similar to the following CUDA/HIP C++:

#define NO_BYTES ... // filled by datamodel, 8*1 here
__global__ void tmp(void* buff) {

int thr_idx = (blockDim.y * threadIdx.z + \
threadIdx.y) * blockDim.x + threadIdx.x;

int blk_idx = (gridDim.y * blockIdx.z + \
blockIdx.y) * gridDim.x + blockIdx.x;

int blk_size = blockDim.x * blockDim.y * blockDim.z;
int buf_idx = blk_idx * blk_size + thr_idx;
void* buf_loc = buff + buf_idx * NO_BYTES;

}

In practice, the probe engine achieves it via formatting a
Python string of assemblies with name and no_bytes like the
following example of PTX:

""".reg .b32 %loc<7>; // applies to all map
mad.lo.s32 %loc7, %ntid.y, %tid.z, %tid.y;
mad.lo.s32 %loc6, %loc7, %ntid.x, %tid.x;
mad.lo.s32 %loc5, %nctaid.y, %ctaid.z, %ctaid.y;
mad.lo.s32 %loc4, %loc5, %nctaid.x, %ctaid.x;
mul.lo.s32 %loc3, %ntid.x, %ntid.y;
mul.lo.s32 %loc2, %loc3, %ntid.z;
mad.lo.s32 %loc1, %loc2, %loc4, %loc5;
// following is unique for each map
.reg .b64 %map_{name}<5>;
mul.wide.s32 %map_{name}4, %loc1, {no_bytes};
ld.param.u64 %map_{name}3, [param_{name}];
cvta.to.global.u64 %map_{name}2, %map_{name}3;
add.s64 %map_{name}1, %map_{name}2, %map_{name}4;"""

D Probe DSL Compilation Example

Our compiler will first translate the DSL into eBPF-like IR:

callback="block_sched.py"
[map.block_sched]
type = "array"
level = "warp"
size = "16"
cap = "1"
[probe.thread_start_thread_end]
position = "kernel"
level = "warp"
register = {"u32": 2, "u64": 3}
before = "clock PD0"
after = """ clock PD1
sub PD1 , PD0
cvt32 P0, PD1
cuid P1
SAVE [block_sched] {PD0 , P0, P1}"""

This intermediate representation is inspired by the mature
eBPF ISA [90] and can be translated into platform-specific
assemblies like PTX:

[probe.thread_start_thread_end]
... # other metadata truncated
before = """.reg .b64 %PD <3>;
.reg .b32 %P<2>;
mov.u64 %PD0 , %clock64;"""
after = """mov.u64 %PD1 , %clock64;
sub.u64 %PD1 , %PD1 , %PD0;
cvt.u32.u64 %P1, %PD1;
mov.u32 %P2, %smid;
SAVE [block_sched] {%PD0 , %P1, %P2};"""

and GCN Asm:

[probe.thread_start_thread_end]
... # other metadata truncated
register ={"u32": 2, "u64": 3, "type": "sgpr"}
before = "s_memrealtime PD0"
after = """ s_memrealtime PD1
SUB64 PD1 , PD1 , PD0
CVT32 P0, PD1
s_getreg_b32 P1, hwreg(HW_REG_HW_ID)
SAVE [block_sched] {PD0 , P0, P1}"""

On AMD GPUs, scalar registers per warp and vector reg-
isters per thread are separated, which is reflected in the new
type field in reigster. We also implement more helpers
for AMD platform to cover the missing functionality, such as
SUB64 for 64-bit subtraction as AMD doesn’t support 64bit ad-
d/sub for Scalar Registers [4] (We emulate it by s_sub_u32).

E Trace Analysis Code Example

Typical NEUTRINO trace analysis code consists of two parts:
❶ (before line 32) Trace reading code auto-generated by NEU-
TRINO probe engine, for reading binary traces into Python
data structures via struct. ❷ (after line 32) Trace analysis
code built upon read structures. The whole program can be
registered to the hook driver as CALLBACK (Fig. 10), like the
following example:

Figure 15: NEUTRINO DMAT aligned to the GPU-local clock. Left: The overview; Right: the Zoom-in view of selected small
proportions highlighted in the red rectangles.

Neutrino Generated Code for Reading Trace
import struct
from typing import NamedTuple, List, Tuple
from neutrino import TraceHeader, TraceSection
class block_sched(NamedTuple):
start: int
elapsed: int
cuid: int

def parse(path: str):
with open(path, "rb") as f:

header: TraceHeader = TraceHeader(
struct.unpack("iiiiiiii", f.read(32)))

sections: List[TraceSection] = []
for _ in range(header.numProbes):

size, offset = struct.unpack("QQ", f.read(16))
sections.append(TraceSection(size, offset))

gridSize = header.gridDimX * header.gridDimY
* header.gridDimZ

blockSize = header.blockDimX * header.blockDimY
* header.blockDimZ

records: List[List[block_sched]] = []
for i in range(gridSize):

records.append([])
for j in range(blockSize):

start, elapsed, cuid = struct.unpack(
"QII", f.read(16))

records[i].append(
block_sched(start, elapsed, cuid))

return header, sections, records
END OF GENERATED CODE
import numpy as np
header, sections, records = parse(sys.argv[1])
unique_cus = set()
for block in records:

unique_cus.add(block[0].cuid)
cu_timelines = [[]] * len(unique_cus)
sched_times = [0.0] * len(unique_cus)
work_times = [0.0] * len(unique_cus)
for cur in records:

sched_out = False
for block in cu_timelines[cur[0].cuid]:

if block.start+block.elapsed<=cur[0].start:
sched_times[cur[0].cuid]+=cur[0].start

- (block.start + block.elapsed)
cu_timelines[cur[0].cuid].remove(block)
cu_timelines[cur[0].cuid].append(cur[0])
work_times[cur[0].cuid] += cur[0].elapsed
sched_out = True
break

if not sched_out:
cu_timelines[cur[0].cuid].append(cur[0])
work_times[cur[0].cuid] += cur[0].elapsed

print(np.array(sched_times).mean(),
np.array(work_times).mean())

F Persistent Kernel for torch.zeros

Following code is generated by GPT4o with prompt: "Write
a Persistent Kernel to initialize a torch tensor to 0":

import torch
import triton
import triton.language as tl
@triton.jit
def zero_persistent_kernel(output_ptr, numel,
BLOCK_SIZE: tl.constexpr, NUM_SMS: tl.constexpr):
start_pid = tl.program_id(axis=0)
num_blocks = tl.cdiv(numel, BLOCK_SIZE)

blocks_per_sm = num_blocks // NUM_SMS
if start_pid < num_blocks % NUM_SMS:

blocks_per_sm += 1
block_id = start_pid - NUM_SMS
for _ in range(blocks_per_sm):

block_id += NUM_SMS
offsets=block_id*BLOCK_SIZE+tl.arange(0,BLOCK_SIZE)
mask = offsets < numel
tl.store(output_ptr + offsets,

tl.zeros([BLOCK_SIZE], dtype=tl.float16), mask)
def zero_persistent(x: torch.Tensor):

numel = x.numel()
NUM_SMS = torch.cuda.get_device_properties("cuda")\

.multi_processor_count
BLOCK_SIZE = 128
grid = lambda META: (min(NUM_SMS,

triton.cdiv(numel, META['BLOCK_SIZE'])),)
zero_persistent_kernel[grid](

x, numel, BLOCK_SIZE, NUM_SMS)
t=torch.empty((4096,4096),torch.float16,device="cuda")
zero_persistent(t)

G Global Timer Aligned DMAT

NEUTRINO DMAT can also be synchronized to the GPU-local
timer, i.e., different compute units share the same synchro-
nized timer, rather than CU-local cycle timer. DMAT of the
same configuration as Fig. 1 under global synchronization
becomes Fig. 15. Under global synchronization, DMAT be-
comes terraced-like and each "step" represents a launch wave
of virtual blocks, 32x128 in this case, to physical compute
units (108 SM on A100). We recommend zooming in on each
"step", for insightful analysis.

The zoomed-in view (right part of Fig. 15, note the y-axis
value difference) reflects the actual memory access pattern
applied to the hardware, and is insightful for hardware-level
analysis and cache simulation.

H Micro-benchmarking Details

Here we present more details behind the theoretical estima-
tion, and the reasons for the varying clock estimation. Take
the most complicated random access as an example, we use
the Fisher–Yates shuffle to create reproducible random index
sequences in A. At runtime, each thread reads the random
index from A and writes to B accordingly, like the following:

__global__ void random_kernel(
const int* A, int* B, // A has been shuffled
int M, int N, unsigned int NS) {
int col = blockIdx.x * blockDim.x + threadIdx.x;
if (col >= M) return; // boundary check
int* src = A + col;
for (int i = 0; i < M * N; i += M) {

int idx = src[i]; // get the random idx from A
B[idx] = i; // write to B[idx]

device_sleep(NS); // spinloop inside
}

}

Then, in verification, we reconstruct the same random index
and simulate the access as follows. We compare simulated
addresses with collected addresses aligned to the base address.

arr = fisher_yates_shuffle(...)
for blockIdx in range(blocks):

for threadIdx in range(threads):
start = blockIdx * threads + threadIdx
clock = LATENCY # 1st access doesn't sleep
for recordIdx in range(records):

index = start + recordIdx * blocks * threads
addr_A = (index * size) # >> 16 => page
addr_B = (arr[index] * size) # >> 16 => page
clock += NS + LATENCY

However, one critical challenge is the memory access la-
tency (LATENCY in the above code), which, in practice, will
vary from cache hit/miss. To be fair, we disable the L1 (via
cg cache operator [60]) and choose the L1 disabled latency
(570 cycles on A100) as LATENCY. Because different patterns
have varying L1 hit rates (88% for linear and 0% for stride),
resulting in unpredictable estimation errors.

I Evaluating NEUTRINO probe slowdown

As presented in Tab. 3, NEUTRINO’s dmat probe leads to
different degrees of slowdowns on different kernels, from
2.75x on Flash-Attn-v2 to 13.163x on SoftMax. We first
analyze this effect from the perspective of memory I/O by
sampling the DMAT access, i.e., adding a sampling counter
to make DMAT save only 1/2 (save only once in two memory
accesses), 1/3, 1/4, 1/8, and measuring the kernel slowdown.

Figure 16: NEUTRINO DMAT Slowdown versus kernels and
sampling frequency.

Results presented in Fig. 16 demonstrate that the slowdown
of DMAT is mainly of a linear relationship w.r.t. the sampling

frequency, highlighting that most DMAT cost comes from the
I/O. Moreover, we also identify two major factors contribut-
ing to the exact slowdown ratio. First, smaller kernels, i.e.,
lower block time, suffer from larger slowdown as the propor-
tion of dmat’s memory I/O would be larger w.r.t. the original
block time (pool, ∼5555 cycles with 13x slowdown and attn,
∼205101 cycles with 2.75x slowdown). Second, for kernels
of similar block time, the proportion of memory instructions
significantly affects the slowdown (attn, 11.03% memory in-
structions with 2.75x slowdown, and gemm, 17.57% memory
instructions with 6.55x slowdown).

J Case Study on GEMM Kernel

Here, we also formulate two configurations of GEMM kernel
(M=N=K=4096) issuing the same burden to the physical SM: ❶
128x256x64 tile, 3 stages, 8 warps, 1 block per SM on A100;
❷ 128x128x64 tile, 3 stages, 4 warps, 2 blocks per SM on
A100. And we present the cumulative distribution function of
block completion time in Fig. 17A and Fig. 17B, respectively.

Figure 17: ●A CDF of elapsed latency in exclusive blocks;
●B CDF of elapsed latency in shared blocks; ●C GFLOP/s
distribution w.r.t. execution progress from left to right; ●D

Progress timeline of shared blocks.

We can identify the same pattern as §7 that shared blocks
suffered from tailing blocks. Similarly, we plot the intra-block-
level throughput timeline and the warp execution timeline in
Fig. 17A and Fig. 17B, yielding similar finding as §7. But
different from the previous, here BLOCK_N, 128 or 256, is a par-
allel dimension. Fig. 14 and Fig. 17 together demonstrate that
the existence of tailing effects in shared blocks due to GPU
synchronization and scheduling (§7) is general, regardless of
kernels or tile organizations (parallel or sequential).

K Analyzing Abnormal Speedup

As shown in Tab. 3, NEUTRINO probes can lead to abnormal
speedup. One significant case of such speedup is GEMM with
M=N=K=2048, where block_sched can lead to up to 0.94x

speedup on CUTLASS implementation and 0.96x speedup
on Triton implementation. We pick the Triton implementa-
tion (BLOCK_M=128, BLOCK_N=128, BLOCK_K=32, STAGES=3,
WARPS=4), and block_sched probe as it has the lowest inter-
ruption to the program (only thread start and end). We pro-
filed the probed and original kernel (with the same -O3) with
hardware profiler Nsight Compute [58] to validate their per-
formance metrics, and the results suggest dramatic changes:

Metric Probed Original

Executed IPC Elapsed 1.08 (+5.88%) 1.02
Issue Slots Busy 30.41% (+4.97%) 28.97%
long_scoreboard (waiting global memory) 2,698,349 (-10.22%) 3,005,844
mio_throttle (waiting memory inst queue) 665,885 (-32.8%) 990,653
no_instruction (waiting instruction/register) 52,804 (-17.32%) 63,868
short_scoreboard (waiting shared memory) 1,311,106 (+148%) 528,495

Profiled metrics highlight a 5.88% IPC improvement with a
4.97% busier instruction scheduling. Moreover, we also iden-
tified that NEUTRINO probed kernel has 10.22% less waiting
time for global memory, 32.8% less waiting time for memory
instruction queue, and 17.32% less waiting time for instruc-
tions or register cache. To further address the improvement,
we checked the assembled machine code, particularly the
main loop with tensor core (HMMA) and async copy (LDGSTS):

/* Probed SASS */
LDGSTS.E.BYPASS ...
IMAD R132, R236 ...
HMMA.16816.F32 ...
HMMA.16816.F32 ...
HMMA.16816.F32 ...
IMAD.MOV.U32 ...
HMMA.16816.F32 ...
IMAD.MOV.U32 ...
IMAD R133, R236 ...
HMMA.16816.F32 ...
LDGSTS.E.BYPASS ...
HMMA.16816.F32 ...
HMMA.16816.F32 ...
HMMA.16816.F32 ...
IMAD R132, R236 ...
IADD3 R134, P0, ...
IMAD.MOV.U32 ...
HMMA.16816.F32 ...

/* Original SASS */
LDGSTS.E.BYPASS ...
HMMA.16816.F32 ...
LDGSTS.E.BYPASS ...
HMMA.16816.F32 ...
LDGSTS.E.BYPASS ...
HMMA.16816.F32 ...
IMAD.MOV.U32 ...
HMMA.16816.F32 ...
IMAD.MOV.U32 ...
HMMA.16816.F32 ...
LDGSTS.E.BYPASS ...
IMAD.X R251, ...
ISETP.LE.AND P5 ...
HMMA.16816.F32 ...
LDGDEPBAR ; ...
IADD3 R138, ...
HMMA.16816.F32 ...
LDGSTS.E.BYPASS ...

From the above truncated and optimized machine code, we
can find the probed kernel’s HMMA instructions are more con-
tinuous, with more opportunities to reuse the register cache
(as results are accumulated along K). Moreover, memory in-
structions LDGSTS are more distributed, possibly leading to a
more balanced pressure on the memory system.

This experiment shows that new instructions from NEU-
TRINO probe(s) may lead the assembler [61] to better execu-
tion flow. Though the current experiment is not comprehen-
sive (only one kernel), we believe that this abnormal speedup
and our analysis spotlight there are still unexplored opportu-
nities in low-level assembler optimization.

	Introduction
	Background and Design Choice
	Neutrino Design
	Programmable Probing Interface
	Virtualized Probe Execution Model
	Structured Map for Persistence
	Verification for Security

	Neutrino Implementation
	Hook Driver
	Probe Engine
	Probe DSL and Compiler
	Utilities
	Extending Neutrino to Other Platforms
	Usage: Putting It All Together

	Neutrino Visualization
	Neutrino Evaluation
	Correctness Validation
	Profiling Overhead
	Extensive Study

	Case Study with Neutrino Insights
	Discussion and Future Work
	Related Work
	Conclusion
	Artifact Appendix
	Abstract
	Scope (meta-information)
	Contents
	Hosting and Requirements
	How to access
	Hardware Requirement
	Software Requirements
	Installation

	Evaluation Workflow
	Getting Started Instructions
	Detailed Instructions
	Expected Results
	Further Evaluation
	Experiments Added in Shepherding

	Hook Driver
	Probe Map Planning
	Probe DSL Compilation Example
	Trace Analysis Code Example
	Persistent Kernel for torch.zeros
	Global Timer Aligned DMAT
	Micro-benchmarking Details
	Evaluating Neutrino probe slowdown
	Case Study on GEMM Kernel
	Analyzing Abnormal Speedup

